药学学报, 2014, 49(6): 789-799
引用本文:
洪玉, 周宇, 王江, 柳红. 先导化合物结构优化策略 (四) —— 改善化合物的血脑屏障通透性[J]. 药学学报, 2014, 49(6): 789-799.
HONG Yu, ZHOU Yu, WANG Jiang, LIU Hong. Lead compound optimization strategy (4) —— improving blood-brain barrier permeability through structural modification[J]. Acta Pharmaceutica Sinica, 2014, 49(6): 789-799.

先导化合物结构优化策略 (四) —— 改善化合物的血脑屏障通透性
洪玉1,2, 周宇2, 王江2, 柳红1,2
1. 中国药科大学药学院, 江苏 南京 210009;
2. 中国科学院上海药物研究所受体结构与功能重点实验室, 上海 201203
摘要:
血脑屏障是人体的天然屏障,它在保护中枢神经系统免受外来物质干扰和伤害的同时,也阻碍了许多潜在的中枢神经系统药物进入中枢,增加了中枢神经系统药物研发的难度。本文简述了化合物透过血脑屏障研究的最新进展,从药物化学角度综述了几种通过结构优化改善化合物透过血脑屏障的方法,旨在为中枢神经系统药物的优化提供思路。常用的几种改善化合物血脑屏障通透性的策略包括: 增加脂溶性、减少氢键供体、简化分子、增加刚性、降低极性表面积、剔除羧基、前药策略、修饰为主动转运体底物及规避易被P-糖蛋白识别的结构等。
关键词:    血脑屏障      结构优化      药物设计      中枢神经系统     
Lead compound optimization strategy (4) —— improving blood-brain barrier permeability through structural modification
HONG Yu1,2, ZHOU Yu2, WANG Jiang2, LIU Hong1,2
1. School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
2. Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Abstract:
Blood-brain barrier is a natural protection for human body.It protects central nervous systemfrom the interruption and damage of xenobiotics.However, it prevents potential drugs aimed at central nervous system, thus becomes an obstruction for the development of central nervous system drugs.The recent development of blood-brain barrier permeability research and several lead optimization strategies to improve blood-brain barrier permeability are reviewed.These structure optimization methods include increasinglipophilicity, reducing hydrogen bond doners, simplifying molecule, increasing rigidity, lowering polar surface area, avoiding acid group, prodrug strategy, modifying into active transporter's substrates, as well as avoiding P-glycoprotein recognized structures.
Key words:    blood-brain barrier    structure optimization    drug design    central nervous system   
收稿日期: 2014-03-18
基金项目: 国家杰出青年科学基金资助项目(81025017)
通讯作者: 柳红 Tel/Fax:86-21-50807042,E-mail:hliu@mail.shcnc.ac.cn
Email: hliu@mail.shcnc.ac.cn
相关功能
PDF(1077KB) Free
打印本文
0
作者相关文章
洪玉  在本刊中的所有文章
周宇  在本刊中的所有文章
王江  在本刊中的所有文章
柳红  在本刊中的所有文章

参考文献:
[1] Di L, Rong H, Feng B.Demystifying brain penetration in central nervous system drug discovery[J].J Med Chem, 2013, 56: 2-12.
[2] Gabathuler R.Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases[J].Neurobiol Dis, 2010, 37: 48-57.
[3] Wang J, Liu H.Lead compound optimization strategy (1) - changing metabolic pathways and optimizing metabolismstability[J].Acta Pharm Sin (药学学报), 2013, 48: 1521- 1531.
[4] Liu H, Wang J, Lin D, et al.Lead compound optimization strategy (2) - structure optimization strategy for reducingtoxicity risks in drug design[J].Acta Pharm Sin (药学学报), 2014, 49: 1-15.
[5] Palmer AM, Alavijeh MS.Translational CNS medicines research[J].Drug Discov Today, 2012, 17: 1068-1078.
[6] Hitchcock SA, Pennington LD.Structure-brain exposure relationships[J].J Med Chem, 2006, 49: 7559-7583.
[7] Kerns E, Di L.Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization[M].Beijing: Academic Press, 2008: 122-135, 311-328.
[8] Ghose AK, Herbertz T, Hudkins RL, et al.Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery[J].ACS Chem Neurosci, 2012, 3: 50-68.
[9] Di L, Kerns EH, Carter GT.Strategies to assess blood-brain barrier penetration[J].Expert Opin Drug Discov, 2008, 3: 677-687.
[10] Mensch J, Oyarzabal J, Mackie C, et al.In vivo, in vitro and in silico methods for small molecule transfer across the BBB[J].J Pharm Sci, 2009, 98: 4429-4468.
[11] Lin JH.CSF as a surrogate for assessing CNS exposure: an industrial perspective[J].Curr Drug Metab, 2008, 9: 46-59.
[12] Swahn BM, Kolmodin K, Karlstrom S, et al.Design and synthesis of β-site amyloid precursor protein cleaving enzyme (BACE1) inhibitors with in vivo brain reduction of β-amyloid peptides[J].J Med Chem, 2012, 55: 9346-9361.
[13] Pinard E, Alanine A, Alberati D, et al.Selective GlyT1inhibitors: discovery of[4-(3-fluoro-5-trifluoromethylpyridin-2-yl) piperazin-1-yl][5-methanesulfonyl-2-((S)-2, 2, 2-trifluoro-1-methylethoxy) phenyl] methanone (RG1678), a promising novel medicine to treat schizophrenia[J].J Med Chem, 2010, 53: 4603-4614.
[14] Cid JM, Tresadern G, Vega JA, et al.Discovery of 3-cyclopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-trifluoromethyl[1, 2, 4] triazolo[4, 3-a] pyridine (JNJ-42153605): a positive allosteric modulator of the metabotropic glutamate 2 receptor[J].J Med Chem, 2012, 55: 8770-8789.
[15] Campiani G, Morelli E, Gemma S, et al.Pyrroloquinoxaline derivatives as high-affinity and selective 5-HT3 receptor agonists: synthesis, further structure-activity relationships, and biological studies[J].J Med Chem, 1999, 42: 4362-4379.
[16] Giblin GM, Billinton A, Briggs M, et al.Discovery of 1-[4-(3-chlorophenylamino)-1-methyl-1H-pyrrolo[3, 2-c] pyridin-7-yl] -1-morpholin-4-ylmethanone (GSK554418A), a brainpenetrant 5-azaindole CB2 agonist for the treatment of chronic pain[J].J Med Chem, 2009, 52: 5785-5788.
[17] Shi F, Shen JK, Chen D, et al.Discovery and SAR of aseries of agonists at orphan G protein-coupled receptor 139[J].ACS Med Chem Lett, 2011, 2: 303-306.
[18] Ashwood VA, Field MJ, Horwell DC, et al.Utilization of an intramolecular hydrogen bond to increase the CNS penetration of an NK1 receptor antagonist[J].J Med Chem, 2001, 44: 2276-2285.
[19] Jones CK, Engers DW, Thompson AD, et al.Discovery, synthesis, and structure-activity relationship development of a series of N-4-(2, 5-dioxopyrrolidin-1-yl) phenylpicolinamides (VU0400195, ML182): characterization of a novel positiveallosteric modulator of the metabotropic glutamate receptor 4 (mGlu4) with oral efficacy in an antiparkinsonian animal model[J].J Med Chem, 2011, 54: 7639-7647.
[20] Bischoff F, Berthelot D, De Cleyn M, et al.Design andsynthesis of a novel series of bicyclic heterocycles as potent γ-secretase modulators[J].J Med Chem, 2012, 55: 9089- 9106.
[21] Ahmed M, Briggs MA, Bromidge SM, et al.Bicyclic heteroarylpiperazines as selective brain penetrant 5-HT6receptor antagonists[J].Bioorg Med Chem Lett, 2005, 15: 4867-4871.
[22] Malamas MS, Barnes K, Hui Y, et al.Novel pyrrolyl 2-aminopyridines as potent and selective human β-secretase (BACE1) inhibitors[J].Bioorg Med Chem Lett, 2010, 20: 2068-2073.
[23] Clark DE.What has polar surface area ever done for drug discovery?[J].Fut Med Chem, 2011, 3: 469-484.
[24] Goodfellow VS, Loweth CJ, Ravula SB, et al.Discovery, synthesis, and characterization of an orally bioavailable, brain penetrant inhibitor of mixed lineage kinase 3[J].J Med Chem, 2013, 56: 8032-8048.
[25] Gillman KW, Starrett JE Jr, Parker MF, et al.Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable γ-secretase inhibitor[J].ACS Med Chem Lett, 2010, 1: 120-124
[26] Sozio P, Cerasa LS, Abbadessa A, et al.Designing prodrugs for the treatment of Parkinson's disease[J].Expert Opin Drug Discov, 2012, 7: 385-406.
[27] Denora N, Trapani A, Laquintana V, et al.Recent advances in medicinal chemistry and pharmaceutical technology-strategies for drug delivery to the brain[J].Curr Top Med Chem, 2009, 9: 182-196.
[28] Pavan B, Dalpiaz A, Ciliberti N, et al.Progress in drugdelivery to the central nervous system by the prodrug approach[J].Molecules, 2008, 13: 1035-1065.
[29] Chen Q, Gong T, Liu J, et al.Synthesis, in vitro and in vivo characterization of glycosyl derivatives of ibuprofen as novel prodrugs for brain drug delivery[J].J Drug Target, 2009, 17: 318-328.
[30] Hitchcock SA.Structural modifications that alter the P-glycoprotein efflux properties of compounds[J].J Med Chem, 2012, 55: 4877-4895.
[31] Bergman JM, Roecker AJ, Mercer SP, et al.Proline bis-amides as potent dual orexin receptor antagonists[J].Bioorg Med Chem Lett, 2008, 18: 1425-1430.
[32] Ward SE, Harries M, Aldegheri L, et al.Discovery of N-[(2S)-5-(6-fluoro-3-pyridinyl)-2, 3-dihydro-1H-inden-2-yl] -2-propanesulfonamide, a novel clinical AMPA receptor positive modulator[J].J Med Chem, 2010, 53: 5801-5812.
相关文献:
1.曾凡奇 彭士明 李 礼 穆丽冰 张振华 张志远 黄 牛.基于组蛋白乙酰化转移酶p300结构的小分子抑制剂设计[J]. 药学学报, 2013,48(5): 700-708
2.连 捷, 王 江, 孙海峰, 林岱宗, 柳 红.甲基在药物分子设计中的应用[J]. 药学学报, 2013,48(8): 1195-1208
3.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422