药学学报, 2014, 49(7): 949-955
引用本文:
江春迎, 王映红. 基于核磁共振技术的定量代谢组学研究[J]. 药学学报, 2014, 49(7): 949-955.
JIANG Chun-ying, WANG Ying-hong. Quantitative metabolomics based on NMR[J]. Acta Pharmaceutica Sinica, 2014, 49(7): 949-955.

基于核磁共振技术的定量代谢组学研究
江春迎, 王映红
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要:
核磁共振技术 (NMR) 既可用于混合体系的定性分析,又可以用于其定量分析。在过去的几十年里,随着分析技术以及各种实验技术的迅速发展,基于核磁共振的定量分析方法已广泛应用于生物样本的分析。核磁共振定量分析技术应用于代谢组学,并成为定量代谢组学 (quantitative metabolomics) 研究中的重要手段。本文将论述这种新分析方法相比于传统方法的优势及不足之处,同时论述其研究过程中需考虑的重要因素以及其在代谢组学研究中的应用。
关键词:    核磁共振      代谢      代谢组学     
Quantitative metabolomics based on NMR
JIANG Chun-ying, WANG Ying-hong
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Nuclear magnetic resonance (NMR) spectroscopy can be used to both identify and quantify chemicals from complex mixtures. Over the last several decades, significant technical and experimental advances have made quantitative nuclear magnetic resonance (qNMR) a valuable analytical tool for quantitative measurements of a wide variety of samples. This particular approach is now being exploited to characterize the metabolomes of many different biological samples and is called quantitative metabolomics or targeted metabolic profiling. In this review, some of the strengths, limitations of NMR-based quantitative metabolomics will be discussed as well as the practical considerations necessary for acquisition with an emphasis on their use for bioanalysis. Recent examples of the application of this particular approach to metabolomics studies will be also presented.
Key words:    qNMR    metabolism    metabolomics   
收稿日期: 2013-12-15
通讯作者: 王映红
Email: wyh@imm.ac.cn
相关功能
PDF(402KB) Free
打印本文
0
作者相关文章
江春迎  在本刊中的所有文章
王映红  在本刊中的所有文章

参考文献:
[1] Nicholson JK, Wilson ID. Understanding ‘Global' systems biology: metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov, 2003, 2: 668-676.
[2] Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology[J]. Mol Syst Biol, 2006, 2: 52.
[3] Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29: 1181-1189.
[4] Tang HR, Wang YL. Metabonomics: a revolution in progress[J]. Prog Biochem Biophys, 2006, 33: 401-407.
[5] Griffiths L, Irving AM. Assay by nuclear magnetic resonance spectroscopy: quantification limits[J]. Analyst, 1998, 123: 1061-1068.
[6] Azmi J, Griffin JL, Shore RF, et al. Chemometric analysis of biofluids following toxicant induced hepatotoxicity: a metabonomic approach to distinguish the effects of 1-naphthy- lisothiocyanate from its products[J]. Xenobiotica, 2005, 35: 839-852.
[7] Lindon JC, Nicholson JK. Analytical technologies for metabonomics and metabolomics, and multi-omics information recovery[J]. TrAC Trend Anal Chem, 2008, 27: 194-204.
[8] Griffin JL. Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterization of xenobiotic toxicity and disease diagnosis[J]. Curr Opin Chem Biol, 2003, 7: 648-654.
[9] Gartland KP, Beddell CR, Lindon JC, et al. Application of pattern recognition methods to the analysis and classification of toxicological data derived from proton nuclear magnetic resonance spectroscopy of urine[J]. Mol Pharmacol, 1991, 39: 629-642.
[10] Anthony ML, Sweatman BC, Beddell CR, et al. Pattern recognition classification of the site of nephrotoxicity based on metabolic data derived from proton nuclear magnetic resonance spectra of urine[J]. Mol Pharmacol, 1994, 46: 199-211.
[11] Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics[J]. J Proteome Res, 2007, 6: 469-479.
[12] Weljie AM, Newton J, Mercier P, et al. Targeted profiling: quantitative analysis of 1H NMR metabolomics data[J]. Anal Chem, 2006, 78: 4430-4442.
[13] Serkova NJ, Zhang Y, Coatney JL, et al. Early detection of graft failure using the blood metabolic profile of a liver recipient[J]. Transplantation, 2007, 83: 517-521.
[14] Eads CD, Furnish CM, Noda I, et al. Molecular factor analysis applied to collections of NMR spectra[J]. Anal Chem, 2004, 76: 1982-1990.
[15] Crockford DJ, Keun HC, Smith LM, et al. Curve-fitting method for direct quantitation of compounds in complex biological mixtures using 1H NMR: application in metabonomic toxicology studies[J]. Anal Chem, 2005, 77: 4556-4562.
[16] Potts BC, Deese AJ, Stevens GJ, et al. NMR of biofluids and pattern recognition: assessing the impact of NMR parameters on the principal component analysis of urine from rat and mouse[J]. J Pharm Biomed Anal, 2001, 26: 463-476.
[17] Swanson MG, Zektzer AS, Tabatabai ZL, et al. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy[J]. Magn Reson Med, 2006, 55: 1257-1264.
[18] Maher AD, Zirah SF, Holmes E, et al. Experimental and analytical variation in human urine in 1H NMR spectroscopy- based metabolic phenotyping studies[J]. Anal Chem, 2007, 79: 5204-5211.
[19] Saude EJ, Sykes BD. Urine stability for metabolomic studies: effects of preparation and storage[J]. Metabolomics, 2007, 3: 19-27.
[20] Wishart DS. Quantitative metabolomics using NMR[J]. Trends Anal Chem, 2008, 27: 228-237.
[21] Beckonert O, Keun HC, Ebbels TM, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts[J]. Nat Protoc, 2007, 2: 2692-2703.
[22] Le Belle JE, Harris NG, Williams SR, et al. A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy[J]. NMR Biomed, 2002, 15: 37-44.
[23] Lin CY, Wu H, Tjeerdema RS. Evaluation of metabolite extraction strategies from tissue samples using NMR[J]. Metabolomics, 2007, 3: 55-67.
[24] Tang H, Wang Y, Nicholson JK, et al. Use of relaxation- edited one-dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma[J]. Anal Biochem, 2004, 325: 260-272.
[25] Daykin CA, Foxall PJ, Connor SC, et al. The comparison of plasma deproteinization methods for the detection of low- molecular-weight metabolites by 1H nuclear magnetic resonance spectroscopy[J]. Anal Biochem, 2002, 304: 220-230.
[26] Weljie AM, Dowlatabadi R, Miller BJ, et al. An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy[J]. J Proteome Res, 2007, 6: 3456- 3464.
[27] Malz F, Jancke H. Validation of quantitative NMR[J]. J Pharm Biomed Anal, 2005, 38: 813-823.
[28] Maniara G, Rajamoorthi K, Rajan S, et al. Method performance and validation for quantitative analysis by 1H and 31P NMR spectroscopy. Applications to analytical standards and agricultural chemicals[J]. Anal Chem, 1998, 70: 4921-4928.
[29] Malz F. Quantitative NMR in the solution state NMR[M]//Holzgrabe U, Wawer I. NMR Spectroscopy in Pharmaceutical Analysis. Oxford: Linacre House, Elsevier, 2008, 43-62.
[30] Jacobsen NE. NMR Spectroscopy Explained: Simplified Theory, Applications, and Examples for Organic Chemistry and Structural Biology[M]. Hoboken, NJ: John Wiley & Sons, Inc. 2007.
[31] Ebel A, Dreher W, Leibfritz D. Effects of zero-filling and apodization on spectral integrals in discrete Fourier-transform spectroscopy of noisy data[J]. J Magn Reson, 2006, 182: 330-338.
[32] Rabenstein DL, Millis KK, Strauss EJ. Proton NMR spectroscopy of human blood plasma and red blood cells[J]. Anal Chem, 1988, 60: A1380-A1391.
[33] Barding GA Jr, Salditos R, Larive CK. Quantitative NMR for bioanalysis and metabolomics[J]. Anal Bioanal Chem, 2012, 404: 1165-1179.
[34] Larive CK, Jayawickrama D, Orfi L. Quantitative analysis of peptides with NMR spectroscopy[J]. Appl Spectrosc, 1997, 51: 1531-1536.
[35] Dumas ME, Maibaum EC, Teague C, et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study[J]. Anal Chem, 2006, 78: 2199-2208.
[36] Pauli GF, Goedecke T, Jaki BU, et al. Quantitative 1H NMR. Development and potential of an analytical method: an update[J]. J Nat Prod, 2012, 75:834-851.
[37] Rundlof T, Mathiasson M, Bekiroglu S, et al. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy[J]. J Pharm Biomed Anal, 2010, 52: 645-651.
[38] Liu M, Tang H, Nicholson JK, et al. Recovery of underwater resonances by magnetization transferred NMR spectroscopy (RECUR-NMR)[J]. J Magn Reson, 2001, 153: 133-137.
[39] Parsons HM, Ludwig C, Günther UL, et al. Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation[J]. BMC Bioinform, 2007, 8: 234.
[40] Wishart DS, Tzur D, Knox C, et al. HMDB: the human metabolome database[J]. Nucleic Acids Res, 2007, 35 (suppl 1): D521-D526.
[41] Slupsky CM, Rankin KN, Wagner J, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles[J]. Anal Chem, 2007, 79: 6995-7004.
[42] Lenz EM, Bright J, Wilson ID, et al. A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects[J]. J Pharm Biomed Anal, 2003, 33: 1103-1115.
[43] Villas-Boas SG, Nielsen J, Smedsgaard J, et al. Metabolome Analysis: An Introduction[M]. New York: John Wiley & Sons, 2007: 280-296.
[44] Schicho R, Shaykhutdinov R, Ngo J, et al. Quantitative metabolomic profiling of serum, plasma, and urine by 1H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals[J]. J Proteome Res, 2012, 11: 3344-3357.
[45] Kapoor SR, Filer A, Fitzpatrick MA, et al. Metabolic profiling predicts response to anti-tumor necrosis factor α therapy in patients with rheumatoid arthritis[J]. Arthritis Rheum, 2013, 65: 1448-1456.
[46] O'Sullivan A, Willoughby RE, Mishchuk D, et al. Metabolomics of cerebrospinal fluid from humans treated for rabies[J]. J Proteome Res, 2013, 12: 481-490.
[47] Smolinska A, Blanchet L, Coulier L, et al. Interpretation and visualization of non-linear data fusion in kernel space: study on metabolomic characterization of progression of multiple sclerosis[J]. PLoS One, 2012, 7: e38163.
[48] Haviland JA, Tonelli M, Haughey DT, et al. Novel diagnostics of metabolic dysfunction detected in breath and plasma by selective isotope-assisted labeling[J]. Metabolism, 2012, 61: 1162-1170.
[49] Choi JS, Baek HM, Kim S, et al. Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy[J]. PLoS One, 2013, 8: e83866.
[50] Sun JC, Bhattacharyya S, Schnackenberg LK, et al. Discovery of early urinary biomarkers in preclinical study of gentamicin- induced kidney injury and recovery in rats[J]. Metabolomics, 2012, 8: 1181-1193.
[51] Liu Y, Lian Z, Zhu H, et al. A systematic, integrated study on the neuroprotective effects of hydroxysafflor yellow a revealed by 1H NMR-based metabonomics and the NF-κB pathway[J]. Evid Based Complement Alternat Med, 2013, 2013: 147362.
[52] Jones OA, Murfitt S, Svendsen C, et al. Comparisons of metabolic and physiological changes in rats following short term oral dosing with pesticides commonly found in food[J]. Food Chem Toxicol, 2013, 59: 438-445.
[53] Smilowitz JT, O'Sullivan A, Barile D, et al. The human milk metabolome reveals diverse oligosaccharide profiles[J]. J Nutr, 2013, 143: 1709-1718.
[54] Etxeberria U, de la Garza AL, Martínez JA, et al. Diet- induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-throughput metabolomic approach in rats[J]. J Physiol Biochem, 2013, 69: 613-623.
[55] Harris CB, Chowanadisai W, Mishchuk DO, et al. Dietary pyrroloquinoline quinine (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects[J]. J Nutr Biochem, 2013, 24: 2076-2084.
[56] Ogegbo OL, Dissanyake W, Crowder J, et al. Urinary 1H NMR metabonomics study on intervention effects of soya milk in Africans[J]. Phytother Res, 2012, 26: 127-135.
[57] Yoseph BP, Breed E, Overgaard CE, et al. Chronic alcohol ingestion increases mortality and organ injury in a murine model of septic peritonitis[J]. PLoS One, 2013, 8: e62792.
[58] Jung Y, Lee J, Kim HK, et al. Metabolite profiling of Curcuma species grown in different regions using 1H NMR spectroscopy and multivariate analysis[J]. Analyst, 2012, 137: 5597-5606.
[59] Jung JY, Jung Y, Kim JS, et al. Assessment of peeling of Astragalus roots using 1H NMR- and UPLC-MS-based metabolite profiling[J]. J Agric Food Chem, 2013, 61: 10398-10407.
[60] Wang Y, Wu QF, Chen C, et al. Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection[J]. BMC Syst Biol, 2012, 6 (Suppl 1): S15.
[61] Kang SM, Park JC, Shin MJ, et al. 1H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure[J]. Clin Biochem, 2011, 44: 293-299.
[62] Jiang CY, Yang KM, Yang L, et al. A 1H NMR-based metabonomic investigation of time-related metabolic trajectories of the plasma, urine and liver extracts of hyperlipidemic hamsters[J]. PLoS One, 2013, 8: e66786.
相关文献:
1.彭国茳, 史碧云, 田俊生, 高杉, 秦雪梅.京尼平抗抑郁作用的1H NMR代谢组学机制研究[J]. 药学学报, 2014,49(2): 209-216
2.杨丽娜, 温静, 孙毅, 梁佳佳, 郑卫华, 张丽丽, 周于杰, 熊志立.四逆散抗肝损伤作用的大鼠血清UPLC-MS/MS代谢组学研究[J]. 药学学报, 2014,49(3): 368-373
3.闫晓慧, 孙长海, 那丽莎, 李想, 任恒鑫, 张舒婷.基于生物分子网络的槲皮素生物效应机制[J]. 药学学报, 2014,49(5): 661-665
4.苗朝霞, 杨柳, 江春迎, 王映红, 朱海波.应用基于NMR代谢组学评价2’,3’,5’-三氧乙酰基-N6-(3-羟基苯胺)腺苷剂量相关效应[J]. 药学学报, 2014,49(5): 679-685
5.严 蓓, 阿基业, 郝海平, 王广基, 刘林生, 查伟斌, 张 颖, 顾胜华.基于血浆和心肌内小分子的代谢组学方法评价心肌缺血大鼠模型[J]. 药学学报, 2013,48(1): 104-112
6.江春迎,杨康敏,杨 柳,苗朝霞,王映红,朱海波.金黄地鼠动脉粥样硬化发展过程中的NMR代谢组学研究[J]. 药学学报, 2013,48(4): 495-502
7.李伟霞 黄美艳 唐于平 郭建明 尚尔鑫 王林艳 钱大玮 段金廒.基于代谢组学研究佛手散对血虚小鼠的养血补血作用机制[J]. 药学学报, 2013,48(8): 1301-1306
8.苗朝霞, 王映红.NMR技术在天然产物活性物质发现及其药理学研究中的应用[J]. 药学学报, 2013,48(9): 1383-1389
9.米霞, 李震宇, 秦雪梅, 张丽增.基于NMR代谢组学技术的不同性状款冬花药材的化学比较[J]. 药学学报, 2013,48(11): 1692-1697
10.邹忠杰, 谢媛媛, 龚梦鹃, 韩彬, 王淑美, 梁生旺.巴戟天补肾阳作用的尿液代谢组学研究[J]. 药学学报, 2013,48(11): 1733-1737
11.何盼, 李震宇, 范圣此, 张福生, 秦雪梅, 杜国军.基于代谢组学技术和ITS2序列的恒山黄芪与川黄芪差异性研究[J]. 药学学报, 2013,48(10): 1595-1601
12.苗朝霞, 王映红.NMR技术在天然产物活性物质发现及其药理学研究中的应用[J]. 药学学报, 2013,48(9): 1383-1389
13.赵龙山, 李 清, 郭超伟, 陈晓辉, 毕开顺.质谱联用技术在生物样品分析中的应用[J]. 药学学报, 2012,47(2): 158-162
14.向铮,蔡小军,曾苏.基于复杂网络与代谢组学的中药药代动力学研究思考与探索[J]. 药学学报, 2012,47(5): 558-564
15.张辰辰, 孙立新.基于代谢组学的细胞内源性代谢物研究进展[J]. 药学学报, 2012,47(8): 978-985
16.严 蓓 阿基业 郝海平 王广基 刘林生 查伟斌 张 颖 顾胜华.气阴两虚证心肌缺血模型方证对应的代谢组学表征[J]. 药学学报, 2011,46(8): 976-982
17.王丽 宋敏 杭太俊 张正行 沈文斌 宋喆 陈坚.NMR代谢组学法研究大蒜辣素对大鼠的作用机制[J]. 药学学报, 2009,44(9): 1019-1024
18.黄 青 陆益红 王广基 王新文 孟 楠 高 洁 卢 迪 闫 鑫 张 颖 刘林生 郝 刚 严 蓓 顾胜华 阿基业.基于GC/TOFMS测定技术的Wistar大鼠血浆代谢谱增龄性变化研究[J]. 药学学报, 2009,44(10): 1095-1101
19.朱超;胡坪1;3;梁琼麟;王义明;罗国安.代谢组学技术的整合运用及其在中药现代化中的应用展望[J]. 药学学报, 2008,43(7): 683-689
20.李晶;吴晓健;刘昌孝;元英进.代谢组学研究中数据处理新方法的应用[J]. 药学学报, 2006,41(1): 47-53
21.徐旻;林东海;刘昌孝.代谢组学研究现状与展望[J]. 药学学报, 2005,40(9): 769-774
22.杨春;孔漫;徐瑞明;张守仁;贺文义;司伊康.固相萃取-核磁共振氢谱法研究乙哌立松的代谢产物[J]. 药学学报, 2000,35(5): 374-377
23.杨春;贺文义;孔漫;徐瑞明;张守仁;司伊康.用固相萃取-核磁共振氢谱法研究大鼠尿液中R-(-)-布洛芬光活代谢产物[J]. 药学学报, 2000,35(11): 843-846
24.司伊康;杨春;孔漫;徐瑞明;张守仁;贺文义.固相萃取—核磁氢谱法研究曲美布汀的代谢产物[J]. 药学学报, 1999,34(5): 376-378
25.王春华;冯亦璞;吴元鎏.丁基苯酞在大鼠中代谢产物的研究[J]. 药学学报, 1997,32(9): 641-646