药学学报, 2014, 49(7): 963-970
引用本文:
李聃, 盛莉, 李燕. 药物转运体的研究方法[J]. 药学学报, 2014, 49(7): 963-970.
LI Dan, SHENG Li, LI Yan. Methods for the study of drug transporters[J]. Acta Pharmaceutica Sinica, 2014, 49(7): 963-970.

药物转运体的研究方法
李聃, 盛莉, 李燕
中国医学科学院、北京协和医学院药物研究所药物代谢室, 天然药物活性物质与功能国家重点实验室, 活性物质发现与适药化研究北京市重点实验室, 北京 100050
摘要:
位于细胞膜上的转运体是体内重要的功能性膜蛋白,在药物吸收、分布、代谢及排泄的动力学过程中发挥重要作用。转运体的功能缺失或抑制是引起药物相互作用及某些疾病的重要原因。了解转运体的功能对阐明药物的体内药代动力学特征、药效及毒性具有重要意义。本文对目前常用的主要药物转运体的研究方法进行综述。
关键词:    转运体      药物吸收      药物相互作用     
Methods for the study of drug transporters
LI Dan, SHENG Li, LI Yan
Department of Drug Metabolism, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
Abstract:
As a functional membrane protein, drug transporters play an important role in the absorption, distribution, metabolism and excretion of drugs. The functional omission or inhibition of drug transporters is believed to be involved in the drug-drug interaction and pathogenesis of certain diseases. Understanding the function of drug transporters is highly significant in terms of pharmacokinetics, pharmacodynamics and toxicity of drugs. This article summarized the methods for the study of drug transporters in vitro and in vivo.
Key words:    drug transporter    drug absorption    drug-drug interaction   
收稿日期: 2013-11-25
基金项目: 十二五新药创制重大专项(2012ZX09301002-001-007,2012ZX09301002-006).
通讯作者: 李燕
Email: yanli@imm.ac.cn
相关功能
PDF(345KB) Free
打印本文
0
作者相关文章
李聃  在本刊中的所有文章
盛莉  在本刊中的所有文章
李燕  在本刊中的所有文章

参考文献:
[1] Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development[J]. Nat Rev Drug Discov, 2010, 9: 215-236.
[2] Shan YQ, Zhu YP, Pang J, et al. Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function[J]. Biol Pharm Bull, 2013, 36: 1562-1569.
[3] Wang J, Liao X, Ye M, et al. In vitro absorption mechanism of strychnine and the transport interaction with liquiritin in Caco-2 cell monolayer model[J]. Acta Pharm Sin (药学学报), 2010, 45: 1160-1164.
[4] Shanmugam S, Im HT, Sohn YT, et al. Zanamivir oral delivery: enhanced plasma and lung bioavailability in rats[J]. Biomol Ther (Seoul), 2013, 21: 161-169.
[5] Hilgendorf C, Ahlin G, Seithel A, et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines[J]. Drug Metab Dispos, 2007, 35: 1333-1340.
[6] Ulvestad M, Darnell M, Molden E, et al. Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system[J]. J Pharmacol Exp Ther, 2012, 343: 145-156.
[7] Ishiguro N, Maeda K, Kishimoto W, et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans[J]. Drug Metab Dispos, 2006, 34: 1109-1115.
[8] Batrakova EV, Li S, Alakhov VY, et al. Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells[J]. J Pharmacol Exp Ther, 2003, 304: 845-854.
[9] Jin X, Yi L, Chen M, et al. Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium- dependent glucose transporter SGLT1[J]. PLoS One, 2013, 8: e68617.
[10] Marion TL, Leslie EM, Brouwer KL. Use of sandwich- cultured hepatocytes to evaluate impaired bile acid transport as a mechanism of drug-induced hepatotoxicity[J]. Mol Pharm, 2007, 4: 911-918.
[11] Tchaparian EH, Houghton JS, Uyeda C, et al. Effect of culture time on the basal expression levels of drug transporters in sandwich-cultured primary rat hepatocytes[J]. Drug Metab Dispos, 2011, 39: 2387-2394.
[12] Annaert PP, Turncliff RZ, Booth CL, et al. P-glycoprotein- mediated in vitro biliary excretion in sandwich-cultured rat hepatocytes[J]. Drug Metab Dispos, 2001, 29: 1277-1283.
[13] Annaert PP, Brouwer KL. Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich- cultured rat hepatocytes[J]. Drug Metab Dispos, 2005, 33: 388-394.
[14] Yang CH, Glover KP, Han X. Characterization of cellular uptake of perfluorooctanoate via organic anion-transporting polypeptide 1A2, organic anion transporter 4, and urate transporter 1 for their potential roles in mediating human renal reabsorption of perfluorocarboxylates[J]. Toxicol Sci, 2010, 117: 294-302.
[15] König J, Zolk O, Singer K, et al. Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations[J]. Br J Pharmacol, 2011, 163: 546-555.
[16] Hirouchi M, Kusuhara H, Onuki R, et al. Construction of triple-transfected cells[organic anion-transporting polypeptide (OATP) 1B1/multidrug resistance-associated protein (MRP)2/MRP3 and OATP1B1/MRP2/MRP4] for analysis of the sinusoidal function of MRP3 and MRP4[J]. Drug Metab Dispos, 2009, 37: 2103-2111.
[17] Kwatra D, Budda B, Vadlapudi AD, et al. Transfected MDCK cell line with enhanced expression of CYP3A4 and P-glycoprotein as a model to study their role in drug transport and metabolism[J]. Mol Pharm, 2012, 9: 1877-1886.
[18] Ishikawa T, Sakurai A, Kanamori Y, et al. High-speed screening of human ATP-binding cassette transporter function and genetic polymorphisms: new strategies in pharmacoge­nomics[J]. Methods Enzymol, 2005, 400: 485-510.
[19] Liu KX, Kato Y, Kaku TI, et al. Hydroxyprolylserine derivatives JBP923 and JBP485 exhibit the antihepatitis activities after gastrointestinal absorption in rats[J]. J Pharmacol Exp Ther, 2000, 294: 510-515.
[20] Saito H, Hirano H, Nakagawa H, et al. A new strategy of high-speed screening and quantitative structure-activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions[J]. J Pharmacol Exp Ther, 2006, 317: 1114-1124.
[21] Uchida Y, Kamiie J, Ohtsuki S, et al. Multichannel liquid chromatography–tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter[J]. Pharm Res, 2007, 24: 2281-2296.
[22] Liu T, Meng Q, Wang C, et al. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rat[J]. Toxicol Appl Pharmacol, 2012, 264: 423-430.
[23] Hamilton KL, Butt AG. Glucose transport into everted sacs of the small intestine of mice[J]. Adv Physiol Educ, 2013, 37: 415-426.
[24] Zhang J, Wang C, Liu Q, et al. Pharmacokinetic interaction between JBP485 and cephalexin in rats[J]. Drug Metab Dispos, 2010, 38: 930-938.
[25] Cattelotte J, André P, Ouellet M, et al. In situ mouse carotid perfusion model: glucose and cholesterol transport in the eye and brain[J]. J Cereb Blood Flow Metab, 2008, 28: 1449- 1459.
[26] Tournier N, Saba W, Cisternino S, et al. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole- body distribution of glyburide[J]. AAPS J, 2013: 1-9.
[27] You F, Hu J, Li X, et al. The elimination of MTC-220, a novel anti-tumor agent of conjugate of paclitaxel and muramyl dipeptide analogue, in rats[J]. Cancer Chemother Pharmacol, 2013: 1-10.
[28] Schinkel A, Smit J, Van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs[J]. Cell, 1994, 77: 491-502.
[29] Kodaira H, Kusuhara H, Ushiki J, et al. Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone[J]. J Pharmacol Exp Ther, 2010, 333: 788-796.
[30] Zamek-Gliszczynski MJ, Goldstein KM, Paulman A, et al. Minor compensatory changes in SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats do not detract from their utility in the study of transporter-mediated pharmacokinetics[J]. Drug Metab Dispos, 2013, 41: 1174-1178.
[31] Matsuda Y, Konno Y, Hashimoto T, et al. In vivo assessment of the impact of efflux transporter on oral drug absorption using portal vein-cannulated rats[J]. Drug Metab Dispos, 2013, 41: 1514-1521.
[32] Yamasaki T, Kawamura K, Hatori A, et al. PET study on mice bearing human colon adenocarcinoma cells using[11C] GF120918, a dual radioligand for P-glycoprotein and breast cancer resistance protein[J]. Nucl Med Commun, 2010, 31: 985-993.
[33] Pichler A, Zelcer N, Prior JL, et al. In vivo RNA interference- mediated ablation of MDR1 P-glycoprotein[J]. Clin Cancer Res, 2005, 11: 4487-4494.
相关文献:
1.高纯颖,陈笑艳,钟大放.转运体在药物经肝脏清除过程中的作用[J]. 药学学报, 2012,47(5): 565-572