药学学报, 2014, 49(8): 1124-1129
引用本文:
蒲俏虹, 吴清清, 金小宝, 王伟章. 格列卫激活caspase-3诱导K562细胞凋亡[J]. 药学学报, 2014, 49(8): 1124-1129.
PU Qiao-hong, WU Qing-qing, JIN Xiao-bao, WANG Wei-zhang. Gleevec induces apoptosis in K562 cells through activating caspase-3[J]. Acta Pharmaceutica Sinica, 2014, 49(8): 1124-1129.

格列卫激活caspase-3诱导K562细胞凋亡
蒲俏虹1,2, 吴清清1,2, 金小宝1,2, 王伟章1,2
1. 广东药学院 基础学院, 广东 广州 510006;
2. 广东药学院 广东省生物活性药物研究重点实验室, 广东 广州 510006
摘要:
本文主要探讨格列卫诱导慢性粒细胞白血病K562细胞凋亡的分子机制。采用流式细胞术检测格列卫对K562细胞凋亡和细胞周期的影响、caspase泛阻断剂Z-VAD-FMK及沉默PDCD4表达对格列卫诱导K562细胞凋亡的影响;Western blotting分析si-PDCD4对PDCD4蛋白的沉默效果,以及格列卫对caspase-3和PARP蛋白的活化及PDCD4蛋白表达的影响。结果显示,格列卫能显著诱导K562细胞发生凋亡和阻滞于G0/G1期,促进caspase-3和PARP蛋白的活化,上调PDCD4蛋白的表达;Z-VAD-FMK抑制剂显著抑制格列卫诱导的细胞凋亡(47.97% ± 10.56% vs 31.05% ± 9.206%,P < 0.05);si-PDCD4能有效抑制PDCD4蛋白的表达;si-PDCD4沉默PDCD4蛋白表达能部分抑制格列卫诱导的细胞凋亡(46.97% ± 14.32% vs 42.8% ± 11.43%)。综上所述,格列卫通过激活caspase-3诱导K562细胞凋亡。
关键词:    格列卫      慢性粒细胞白血病      K562细胞      细胞凋亡      caspase-3     
Gleevec induces apoptosis in K562 cells through activating caspase-3
PU Qiao-hong1,2, WU Qing-qing1,2, JIN Xiao-bao1,2, WANG Wei-zhang1,2
1. School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China;
2. Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
Abstract:
The present study is to elucidate the mechanisms underlying Gleevec-induced apoptosis of chronic myeloid leukemia (CML) K562 cells in vitro. The apoptotic cell death and cell cycle distribution after Gleevec treatment and the effect of PDCD4 siRNA on Gleevec-induced apoptosis of K562 cells were analyzed by flow cytometry. The effect of Gleevec on p-Crkl, caspase-3, PARP and PDCD4 protein levels, and the knockdown efficacy of PDCD4 siRNA were detected by Western blotting. The results showed that Gleevec dramatically suppressed the phosphorylation level of Crkl in a dose-dependent manner and induced significant apoptosis and G0/G1 cell cycle arrest of K562 cells in time-and dose-dependent manners. In addition, Gleevec activated caspase-3 and its downstream substrates PARP, and the caspase pan inhibitor Z-VAD-FMK (50 μmol·L-1) markedly reduced Gleevec-induced apoptosis from 47.97% ± 10.56% to 31.05% ± 9.206% (P < 0.05). Moreover, Gleevec significantly increased the protein expression of programmed cell death 4 (PDCD4). PDCD4 knockdown by siRNA reduced Gleevec-induced apoptosis from 46.97% ± 14.32% to 42.8% ± 11.43%. In summary, Gleevec induced apoptosis in K562 cells via caspase-3 activation.
Key words:    Gleevec    chronic myeloid leukemia    K562 cell    apoptosis    caspase-3   
收稿日期: 2014-03-03
基金项目: 国家自然科学基金资助项目(81100369);广州市科技计划项目(11C22130682).
通讯作者: 金小宝 Tel/Fax:86-20-39352617,E-mail:wwzss@163.com;王伟章 jinxf2001@163.com
Email: wwzss@163.com;jinxf2001@163.com
相关功能
PDF(3005KB) Free
打印本文
0
作者相关文章
蒲俏虹  在本刊中的所有文章
吴清清  在本刊中的所有文章
金小宝  在本刊中的所有文章
王伟章  在本刊中的所有文章

参考文献:
[1] Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining [J]. Nature, 1973, 243: 290-293.
[2] Druker BJ. Translation of the Philadelphia chromosome into therapy for CML [J]. Blood, 2008, 112: 4808-4817.
[3] Horne SD, Steven JB, Abdallah BY, et al. Why imatinib remains an exception of cancer research [J]. J Cell Physiol, 2013, 228: 665-670.
[4] Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells [J]. Nat Med, 1996, 2: 561-566.
[5] Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative [J]. Cancer Res, 1996, 56: 100-104.
[6] le Coutre P, Mologni L, Cleris L, et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor [J]. J Natl Cancer Inst, 1999, 91: 163-168.
[7] Deininger MW, Goldman JM, Lydon N, et al. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells [J]. Blood, 1997, 90: 3691-3698.
[8] Jacquel A, Herrant M, Legros L, et al. Imatinib induces mitochondria-dependent apoptosis of the Bcr-Abl-positive K562 cell line and its differentiation toward the erythroid lineage [J]. FASEB J, 2003, 17: 2160-2162.
[9] Shao S, Li S, Qin Y, et al. Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia [J]. Int J Oncol, 2014, 44: 1661-1668.
[10] Lankat-Buttgereit B, Göke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation [J]. Biol Cell, 2009, 101: 309-317.
[11] Zhang X, Wang XY, Song XG, et al. Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo [J]. Cancer Sci, 2010, 101: 2163-2170.
[12] Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia [J]. Nat Rev Cancer, 2005, 5: 172-183.
[13] Li KN, Jin J, Chen XG. Annexin A1 increases the sensitiv-ity of K562 cell to imatinib [J]. Acta Pharm Sin (药学学报), 2013, 48: 866-873.
[14] Gobin B, Moricrau G, Ory B, et al. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models [J]. PLoS One, 2014, 9: 90795.
[15] Gora-Tybor J, Deininger MW, Goldman JM, et al. The susceptibility of Philadelphia chromosome positive cells to FAS-mediated apoptosis is not linked to the tyrosine kinase activity of BCR-ABL [J]. Br J Haematol, 1998, 103: 716-720.
[16] Nimmanapalli R, Bhalla K. Novel targeted therapies for Bcr-Abl positive acute leukemias: beyond STI571 [J]. Oncogene, 2002, 21: 8584-8590.
[17] Takeda K, Stagg J, Yagita H, et al. Targeting death-inducing receptors in cancer therapy [J]. Oncogene, 2007, 26: 3745-3757.
[18] Gotoh T, Oyadomari S, Mori K, et al. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP [J]. J Biol Chem, 2002, 277: 12343-12350.
[19] Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta [J]. Nature, 2000, 403: 98-103.
[20] Wang XZ, Harding HP, Zhang Y, et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses [J]. EMBO J, 1998, 17: 5708-5717.
[21] Wu N, Kurosu T, Oshikawa G, et al. PECAM-1 is involved in BCR/ABL signaling and may downregulate imatinib-induced apoptosis of Philadelphia chromosome positive leukemia cells [J]. Int J Oncol, 2013, 42: 419-428.
[22] Zhang YJ, Lu CR, Cao Y, et al. Imatinib induces H2AX phosphorylation and apoptosis in chronic myelogenous leukemia cells in vitro via caspase-3/Mst1 pathway [J]. Acta Pharm Sin (药学学报), 2012, 33: 551-557.
[23] Meng F, Zeng W, Huang L, et al. Effects of imatinib on CD34 cells of patients with chronic myeloid leukemia in the megakaryocytic crisis phase [J]. Oncol Lett, 2014, 7: 791-796.
[24] Afonja O, Juste D, Das S, et al. Induction of PDCD4 tu-mor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis [J]. Oncogene, 2004, 23: 8135-8145.
[25] Ozpolat B, Akar U, Steiner M, et al. Programmed cell death-4 tumor suppressor protein contributes to retinoic ac-id-induced terminal granulocytic differentiation of human myeloid leukemia cells [J]. Mol Cancer Res, 2007, 5: 95-108.
[26] Kong HL, Ma DX, Zhang JJ, et al. Expression and significance of PDCD4 and TGF-β1 in patients with acute myeloid leukemia [J]. J Shandong Univ (山东大学学报), 2011, 49: 110-114.
相关文献:
1.王潞;赵烽;刘珂.牛蒡子苷元诱导人白血病细胞凋亡的作用及机制[J]. 药学学报, 2008,43(5): 542-547
2.石瑞丽;张建军.葛根素对缺氧性血管内皮细胞凋亡的保护作用[J]. 药学学报, 2003,38(2): 103-107
3.陈滢;陈晓春.人参皂苷Rg1抗黑质神经元凋亡的可能机制[J]. 药学学报, 2002,37(4): 249-252