药学学报, 2014, 49(9): 1211-1217
引用本文:
马晓玮, 李金泽, 张天泰, 杜冠华. 非甾体抗炎药抗阿尔茨海默病神经炎症的研究进展[J]. 药学学报, 2014, 49(9): 1211-1217.
MA Xiao-wei, LI Jin-ze, ZHANG Tian-tai, DU Guan-hua. Recent development of non-steroidal anti-inflammatory drugs on the neuro-inflammation of Alzheimer’s disease[J]. Acta Pharmaceutica Sinica, 2014, 49(9): 1211-1217.

非甾体抗炎药抗阿尔茨海默病神经炎症的研究进展
马晓玮, 李金泽, 张天泰, 杜冠华
中国医学科学院、北京协和医学院药物研究所, 药物靶点研究与新药筛选北京市重点实验室, 北京 100050
摘要:
神经病理学、临床流行病学及动物模型等研究证实神经炎症与阿尔茨海默病的发生发展密切相关,但大部分的临床试验却发现非甾体抗炎药的抗炎治疗并不能改善阿尔茨海默病患者的症状或认知功能。分析现有的研究文献,还不能明确非甾体抗炎药对阿尔茨海默病的治疗效果,仍然需要进行抗炎机制的深入研究以及规范的临床试验。本文拟通过对非甾体抗炎药与阿尔茨海默病相关研究文献进行综述,梳理非甾体抗炎药与阿尔茨海默病的关系,为抑制神经炎症途径治疗阿尔茨海默病提供一些启示。
关键词:    阿尔茨海默病      神经炎症      非甾体抗炎药     
Recent development of non-steroidal anti-inflammatory drugs on the neuro-inflammation of Alzheimer’s disease
MA Xiao-wei, LI Jin-ze, ZHANG Tian-tai, DU Guan-hua
Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Neuropathological, clinical epidemiology and animal models studies provide clear evidence for the activation of neuroinflammation in Alzheimer's disease (AD), and long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is linked with reduced risk to develop the disease. But the clinical trials got a negative outcome with traditional NSAIDs treating AD. The therapeutic effects of NSAIDs on Alzheimer's disease are still not clear based on the present research. Profound study for anti-inflammatory mechanisms and standardized clinical trials are needed. As cause and effect relationships between neuroinflammation and AD are being worked out, the challenge is how to realize the effect of traditional NSAIDs on treating AD.
Key words:    Alzheimer’s disease    neuroinflammation    non-steroidal anti-inflammatory drugs   
收稿日期: 2014-03-31
基金项目: 国家自然科学基金面上项目(81373388);北京市科委科技计划项目(Z13110200270000).
通讯作者: 张天泰, 杜冠华
Email: ttzhang@imm.ac.cn;dugh@imm.ac.cn
相关功能
PDF(310KB) Free
打印本文
0
作者相关文章
马晓玮  在本刊中的所有文章
李金泽  在本刊中的所有文章
张天泰  在本刊中的所有文章
杜冠华  在本刊中的所有文章

参考文献:
[1] Alzheimer's Disease International. World Alzheimer Report 2009 [R/OL]. UK, ADI, 2009. http://www.alz.co.uk/research/files/WorldAlzheimerReport.pdf.
[2] Zhang ZX, Zahner HE, Roman GC, et al. Dementia subtypes in China: prevalence in Beijing, Xi'an, Shanghai and Chengdu [J]. Arch Neurol, 2005, 62: 447-453.
[3] Karran E, Mercken M, Strooper BD. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics [J]. Nat Rev Drug Discov, 2011, 10: 698-712.
[4] Calignon AD, Polydoro M, Calvet MS, et al. Propagation of Tau pathology in a model of early Alzheimer's disease [J]. Neuron, 2012, 73: 685-697.
[5] Lemmens MAM, Sierksma ASR, Rutten BPF, et al. Age-related changes of neuron numbers in the frontal cortex of a transgenic mouse model of Alzheimer's disease [J]. Brain Struct Funct, 2011, 216: 227-237.
[6] Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature [J]. Cold Spring Harbor Perspect Med, 2012, 2: a006346.
[7] Obulesu M, Jhansilakshmi M. Neuroinflammation in Alzheimer's disease: an understanding of physiology and pathology [J]. Int J Neurosci, 2014, 124: 227-235.
[8] Eikelenboom P, Stam FC. Immunoglobulins and complement factors in senile plaques [J]. Acta Neuropathol, 1982, 57: 239-242.
[9] McGeer PL, Itagaki S, Tago H, et al. Reactive microglia in patients with senile dementia of Alzheimer-type are positive for the histocompatibility glycoprotein HLA-DR [J]. Neurosci Lett, 1987, 79: 195-200.
[10] Rogers J, Luber-Narod J, Styren SD, et al. Expression of the immune system associated antigen by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease [J]. Neurobiol Aging, 1988, 9: 339-349.
[11] Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease [J]. Neurobiol Aging, 2000, 21: 383-421.
[12] Serpente M, Bonsi R, Scarpini E, et al. Innate immune system and inflammation in Alzheimer's disease: from pathogenesis to treatment [J]. Neuroimmunomodulation, 2014, 21: 79-87.
[13] Rogers J, Cooper NR, Webster S, et al. Complement activation by β-amyloid in Alzheimer's disease [J]. Proc Natl Acad Sci USA, 1992, 89: 10016-10020.
[14] Eikelenboom P, Veerhuis R. The role of complement and activated microglia in the pathogenesis of Alzheimer's disease [J]. Neurobiol Aging, 1996, 17: 673-680.
[15] Hoozemans JJ, Veerhuis R, Rozemuller JM, et al. Neuroinflammation and regeneration in the early stages of Alzheimer's disease [J]. Int J Dev Neurosci, 2006, 24: 157-165.
[16] Okello A, Edison P, Archer HA, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study [J]. Neurology, 2009, 72: 56-62.
[17] Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal anti-inflammatory drugs and the risk of Alzheimer's disease [J]. N Engl J Med, 2001, 345: 1515-1521.
[18] Côté S, Carmichael PH, Verreault R, et al. Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer's disease [J]. Alzheimers Dement, 2012, 8: 219-226.
[19] Tang W, He M, Yang B, et al. Association study of polymorphisms in the cyclooxygenase-2 gene and Alzheimer's disease risk in Chinese [J]. Neurol Sci, 2013, 34: 695-699.
[20] Ancelina ML, Carrièr I, Helmer C, et al. Steroid and non-steroidal anti-inflammatory drugs, cognitive decline, and dementia [J]. Neurobiol Aging, 2012, 33: 2082-2090.
[21] McGeer PL, McGeer EG. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies [J]. Neurobiol Aging, 2007, 28: 639-647.
[22] Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease [J]. J Neurosci, 2000, 20: 5709-5714.
[23] Lim GP, Yang F, Chu T, et al. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice [J]. Neurobiol Aging, 2001, 22: 983-991.
[24] Yan Q, Zhang J, Liu H, et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease [J]. J Neurosci, 2003, 23:7504-7509.
[25] Jantzen PT, Connor KE, DiCarlo G, et al. Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice [J]. J Neurosci, 2002, 22: 2246-2254.
[26] Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice [J]. Brain, 2005, 128: 1442-1453.
[27] Kukar T, Murphy MP, Eriksen JL, et al. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ42 production [J]. Nat Med, 2005, 11: 545-550.
[28] Quinn J, Montine T, Morrow J, et al. Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer's disease [J]. J Neuroimmunol, 2003, 137: 32-41.
[29] Sung S, Yang H, Uryu K, et al. Modulation of nuclear factor-κB activity by indomethacin influences Ab levels but not Aβ precursor protein metabolism in a model of Alzheimer's disease [J]. Am J Pathol, 2004, 165: 2197-2206.
[30] Groen TV, Kadish I. Transgenic AD model mice, effects of potential anti-AD treatments on inflammation and pathology [J]. Brain Res Rev, 2005, 48: 370-378.
[31] Carreras I, McKee AC, Choi JK, et al. R-Flurbiprofen improves tau, but not Aβ pathology in a triple transgenic model of Alzheimer's disease [J]. Brain Res, 2013, 1541: 115-127.
[32] Dong Z, Yan L, Huang G, et al. Ibuprofen partially attenuates neurodegenerative symptoms in presenilin conditional double-knockout mice [J]. Neuroscience, 2014, 270: 58-68.
[33] Lan X, Liu R, Sun L, et al. Methylsalicylate 2-O-beta-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes [J]. Neuroinflammation, 2011, 8: 98.
[34] Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease [J]. Nat Rev Immunol, 2011, 11: 775-787.
[35] Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper [J]. Neuron, 2013, 77: 10-18.
[36] Karlstetter M, Nothdurfter C, Aslanidis A, et al. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis [J]. J Neuroinflammation, 2014, 11: 3.
[37] Wang YP, Wu Y, Li LY, et al. Aspirin-triggered lipoxin A4 attenuates LPS induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells [J]. J Neuroinflammation, 2011, 8: 95.
[38] Medeiros R, Kitazawa M, Passos GF, et al. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer diseases like pathology in mice [J]. Am J Patho, 2013, 182: 1780-1789.
[39] Chen CH, Zhou WH, Liu SC, et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease [J]. Int J Neuropsychopharmacol, 2012, 15: 77-90.
[40] Wang CY, Xie JW, Xu Y, et al. Trientine reduces BACE1 activity and mitigates amyloidosis via the AGE/RAGE/NF-κB pathway in a transgenic mouse model of Alzheimer's disease [J]. Antioxid Redox Signaling, 2013, 19: 2024-2039.
[41] Guglielmottoa M, Aragno M, Tamagno E, et al. AGEs/RAGE complex upregulates BACE1 via NF-kappaB pathway activation [J]. Neurobiol Aging, 2012, 33: 196.e13-196.e27.
[42] Weggen S, Eriksen JL, Das P, et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity [J]. Nature, 2001, 414: 212-216.
[43] Green RC, Schneider LS, Amato DA, et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial [J]. JAMA, 2009, 302: 2557-2564.
[44] Hoozemans JJ, Veerhuis R, Janssen I, et al. The role of cyclooxygenase 1 and 2 activity in prostaglandin E2 secretion by cultured human adult microglia: implications for Alzheimer's disease [J]. Brain Res, 2002, 951: 218-226.
[45] Bazan NG, Lukiw WJ. Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-1beta and amyloid beta 42 peptide is potentiated by hypoxia in primary human neural cells [J]. Biol Chem, 2002, 277: 359-367.
[46] Choi SH, Aid S, Caracciolo L, et al. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer's disease [J]. J Neurochem, 2013, 124: 59-68.
[47] Cunningham C, Skelly DT. Non-steroidal anti-inflammatory drugs and cognitive function: are prostaglandins at the heart of cognitive impairment in dementia and delirium [J]. J Neuroimmune Pharmacol, 2012, 7: 60-73.
[48] Jaradat MS, Wongsud B, Phornchirasilp S, et al. Activation of peroxisome proliferator activated receptor isoforms and inhibition of prostaglandin H2 synthases by ibuprofen, naproxen, and indomethacin [J]. Biochem Pharmacol, 2001, 62: 1587-1595.
[49] Dill J, Patel AR, Yang XL, et al. A molecular mechanism for ibuprofen-mediated RhoA inhibition in neurons [J]. J Neurosci, 2010, 30: 963-972.
[50] Bulic B, Ness J, Hahn S, et al. Chemical biology, molecular mechanism and clinical perspective of gamma-secretase modulators in Alzheimer's disease [J]. Curr Neuropharmacol, 2011, 9: 598-622.
[51] Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial of indomethacin in Alzheimer's disease [J]. Neurology, 1993, 43: 1609-1611.
[52] Aisen PS, Schafer KA, Grundman M, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease prograssion: a randomized control trial [J]. JAMA, 2003, 289: 2819-2826.
[53] AD2000 Collaborative Group. Aspirin in Alzheimer's disease (AD2000): a randomized open-label trial [J]. Lancet Neurol, 2008, 7: 41-49.
[54] Green RC, Schneider LS, Amato DA, et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease [J]. JAMA, 2009, 302: 2557-2564.
[55] Jaturapatporn D, Isaac MG, McCleery J, et al. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer's disease [J]. Cochrane Database Syst Rev, 2012, 2: CD006378.