药学学报, 2014, 49(9): 1238-1247
引用本文:
栗增, 王江, 周宇, 柳红. 先导化合物结构优化策略(三)——通过化学修饰改善水溶性[J]. 药学学报, 2014, 49(9): 1238-1247.
LI Zeng, WANG Jiang, ZHOU Yu, LIU Hong. Lead compound optimization strategy (3)— structure modification strategies for improving water solubility[J]. Acta Pharmaceutica Sinica, 2014, 49(9): 1238-1247.

先导化合物结构优化策略(三)——通过化学修饰改善水溶性
栗增, 王江, 周宇, 柳红
中国科学院上海药物研究所, 受体结构与功能重点实验室, 上海 201203
摘要:
水溶性是有机小分子药物极为重要的物理化学性质,也是小分子药物研发过程中的关键问题之一。良好的水溶性有助于药效的发挥和药代动力学性质的改善。在药物化学领域,通过化学结构修饰方法改善药物的水溶性,是从溶解的本质上考虑和解决问题的基本方法。本文综述了通过化学结构修饰改善水溶性的基本策略,包括成盐修饰、引入极性基团、降低脂溶性、构象优化、前药修饰等。
关键词:    水溶性      结构修饰      前药      先导化合物优化     
Lead compound optimization strategy (3)— structure modification strategies for improving water solubility
LI Zeng, WANG Jiang, ZHOU Yu, LIU Hong
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Abstract:
Water solubility is an essential physical chemistry property of organic small molecule drug and is also a very important issue in drug discovery. Good water solubility often leads to a good drug potency and pleasant pharmacokinetic profiles. To improve water solubility, structure modification is a straight and effective way based on the theory of water solubility. This review summarized valid structure modification strategies for improving water solubility including salt formation, polar group introduction, liposolubility reduction, conformation optimization and prodrug.
Key words:    water solubility    structure modification    prodrug    lead optimization   
收稿日期: 2014-01-21
基金项目: 国家杰出青年科学基金资助项目(81025017).
通讯作者: 柳红
Email: hliu@mail.shcnc.ac.cn
相关功能
PDF(573KB) Free
打印本文
0
作者相关文章
栗增  在本刊中的所有文章
王江  在本刊中的所有文章
周宇  在本刊中的所有文章
柳红  在本刊中的所有文章

参考文献:
[1] Liu H, Wang J, Lin D, et al. Lead compound optimization strategy (2)-structure optimization strategy for reducing toxicity risks in drug design [J]. Acta Pharm Sin (药学学报), 2014, 49: 1-15.
[2] Wang J, Liu H. Lead compound optimization strategy (1)-changing metabolic pathways and optimizing metabolism stability [J]. Acta Pharm Sin (药学学报), 2013, 48: 1521-1531.
[3] Shen F, Su Q, Zhou W. Research and development of pharmaceutical salts [J]. Prog Pharm Sci, 2012, 36: 151-157.
[4] Bhattachar SN, Deschenes LA, Wesley JA. Solubility: it's not just for physical chemists [J]. Drug Discov Today, 2006, 11: 1012-1018.
[5] Ishikawa M, Hashimoto Y. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry [J]. J Med Chem, 2011, 54: 1539-1554.
[6] Bollini M, Cisneros JA, Spasov KA, et al. Optimization of diarylazines as anti-HIV agents with dramatically enhanced solubility [J]. Bioorg Med Chem Lett, 2013, 23: 5213-5216.
[7] Guo ZR. Strategy of molecular design of drugs: the unification of macro-properties and micro-structures of a molecule [J]. Acta Pharm Sin (药学学报), 2008, 43: 227-233.
[8] Ran YQ, Yalkowsky SH. Prediction of drug solubility by the general solubility equation (GSE) [J]. J Chem Inf Comput Sci, 2001, 41: 354-357.
[9] Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates [J]. J Med Chem, 2002, 45: 2615-2623.
[10] Paulekuhn GS, Dressman JB, Saal C. Trends in active pharmaceutical ingredient salt selection based on analysis of the Orange Book Database [J]. J Med Chem, 2007, 50: 6665-6672.
[11] Lam KW, Xu JJ, Ng KM. Pharmaceutical salt formation guided by phase diagrams [J]. Ind Eng Chem Res, 2010, 49: 12503-12512.
[12] Zhang DP, Lu WG. Salt screening in drug development process [J]. Chin J Pharm (中国医药工业杂志), 2011, 42: 631-635.
[13] Guerrieri P, Jarring K, Taylor LS. Impact of counterion on the chemical stability of crystalline salts of procaine [J]. J Pharm Sci, 2010, 99: 3719-3730.
[14] Bastin RJ, Bowker MJ, Slater BJ. Salt selection and optimization procedures for pharmaceutical new chemical entities [J]. Org Proc Res Dev, 2000, 4: 427-435.
[15] Nieman JA, Heasley SE, Nair SK, et al. MEDI 225-Modifications of C-2 on the pyrroloquinoline template aimed at the development of potent herpesvirus antivirals [C]. The 232nd ACS National Meeting, San Francisco, CA, September 10-14, 2006.
[16] Nieman JA, Nair SK, Heasley SE, et al. Modifications of C-2 on the pyrroloquinoline template aimed at the development of potent herpesvirus antivirals with improved aqueous solubility [J]. Bioorg Med Chem Lett, 2010, 20: 3039-3042.
[17] Scott JS, Birch AM, Brocklehurst KJ, et al. Use of small-molecule crystal structures to address solubility in a novel series of G protein coupled receptor 119 agonists: optimization of a lead and in vivo evaluation [J]. J Med Chem, 2012, 55: 5361-5379.
[18] Scott JS, Birch AM, Brocklehurst KJ, et al. Optimization of aqueous solubility in a series of G protein coupled receptor 119 (GPR119) agonists [J]. MedChemComm, 2013, 4: 95-100.
[19] Wang J, Liu H. Application of nitrile in drug design [J]. Chin J Org Chem (有机化学), 2012, 32: 1643-1652.
[20] Hunt JT, Ding CZ, Batorsky R, et al. Discovery of (R)-7-cyano-2, 3, 4, 5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3-(phenylmethyl)-4-(2-thienylsulfonyl)-1H-1, 4-benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity [J]. J Med Chem, 2000, 43: 3587-3595.
[21] Ballard SA, Turner LA, Naylor AM. Sildenafil, a potent selective inhibitor of type 5 phosphodiesterase, enhances nitric oxide-dependent relaxation of rabbit corpus cavernosum [J]. Br J Pharmacol, 1996, 118: 153-153.
[22] Ohashi T, Oguro Y, Tanaka T, et al. Discovery of pyrrolo [3, 2-c]quinoline-4-one derivatives as novel hedgehog signaling inhibitors [J]. Bioorg Med Chem, 2012, 20: 5496-5506.
[23] Ohashi T, Oguro Y, Tanaka T, et al. Discovery of the investigational drug TAK-441, a pyrrolo [3, 2-c] pyridine derivative, as a highly potent and orally active hedgehog signaling inhibitor: modification of the core skeleton for improved solubility [J]. Bioorg Med Chem, 2012, 20: 5507-5517.
[24] Press NJ, Taylor RJ, Fullerton JD, et al. Solubility-driven optimization of phosphodiesterase-4 inhibitors leading to a clinical candidate [J]. J Med Chem, 2012, 55: 7472-7479.
[25] Kasuga J, Ishikawa M, Yonehara M, et al. Improvement of water-solubility of biarylcarboxylic acid peroxisome proliferator-activated receptor (PPAR) δ-selective partial agonists by disruption of molecular planarity/symmetry [J]. Bioorg Med Chem, 2010, 18: 7164-7173.
[26] Li Q, Chu DTW, Claiborne A, et al. Synthesis and structure-activity relationships of 2-pyridones: a novel series of potent DNA gyrase inhibitors as antibacterial agents [J]. J Med Chem, 1996, 39: 3070-3088.
[27] Fray MJ, Bull DJ, Carr CL, et al. Structure-activity relationships of 1, 4-dihydro-(1H, 4H)-quinoxaline-2, 3-diones as N-methyl-D-aspartate (glycine site) receptor antagonists. 1. Heterocyclic substituted 5-alkyl derivatives [J]. J Med Chem, 2001, 44: 1951-1962.
[28] Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications [J]. Nat Rev Drug Discov, 2008, 7: 255-270.
[29] Ji X, Wang J, Zhang L, et al. Application of phosphates and phosphonates prodrugs in drug research and development [J]. Acta Pharm Sin (药学学报), 2013, 48: 621-634.
[30] Furfine ES, Baker CT, Hale MR, et al. Preclinical pharmacology and pharmacokinetics of GW433908, a water-soluble prodrug of the human immunodeficiency virus protease inhibitor amprenavir [J]. Antimicrob Agents Chemother, 2004, 48: 791-798.
[31] Xin QS, Fan HX, Guo B, et al. Design, synthesis, and structure-activity relationship studies of highly potent novel benzoxazinyl-oxazolidinone antibacterial agents [J]. J Med Chem, 2011, 54: 7493-7502.
[32] Vollmann K, Qurishi R, Hockemeyer J, et al. Synthesis and properties of a new water-soluble prodrug of the adenosine A(2A) receptor antagonist MSX-2 [J]. Molecules, 2008, 13: 348-359.
[33] Fu XZ, Zhang W, Wang Y, et al. Design, synthesis and anti-oxidative evaluation of L-amino acid prodrugs of scutellarein [J]. Acta Pharm Sin (药学学报), 2011, 46: 548-555.
[34] Rodriguez-Perez T, Fernandez S, Sanghvi YS, et al. Chemoenzymatic syntheses and anti-HIV-1 activity of glucose-nucleoside conjugates as prodrugs [J]. Bioconjug Chem, 2010, 21: 2239-2249.
[35] Lin YS, Tungpradit R, Sinchaikul S, et al. Targeting the delivery of glycan-based paclitaxel prodrugs to cancer cells via glucose transporters [J]. J Med Chem, 2008, 51: 7428-7441.
[36] OReilly S, Rowinsky EK. The clinical status of irinotecan (CPT-11), a novel water soluble camptothecin analogue: 1996 [J]. Crit Rev Oncol Hematol, 1996, 24: 47-70.
[37] Vignaroli G, Zamperini C, Dreassi E, et al. Pyrazolo [3, 4-d] pyrimidine prodrugs: strategic optimization of the aqueous solubility of dual Src/Abl inhibitors [J]. ACS Med Chem Lett, 2013, 4: 57-61.
[38] Greenwald RB, Gilbert CW, Pendri A, et al. Drug delivery systems: water soluble taxol 2'-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness [J]. J Med Chem, 1996, 39: 424-431.
[39] Bhatt RL, de Vries P, Tulinsky J, et al. Synthesis and in vivo antitumor activity of poly(L-glutamic acid) conjugates of 20(S)-camptothecin [J]. J Med Chem, 2003, 46: 190-193.
[40] Davies NM, Watson MS. Clinical pharmacokinetics of sulindac-a dynamic old drug [J]. Clin Pharmacokinet, 1997, 32: 437-459.
[41] Hemenway RN, Nti-Addae K, Guarino VR, et al. Preparation, characterization and in vivo conversion of new water-soluble sulfenamide prodrugs of carbamazepine [J]. Bioorg Med Chem Lett, 2007, 17: 6629-6632.
相关文献:
1.姬 勋, 王 江, 张 磊, 赵临襄, 蒋华良, 柳 红.磷酸酯前药在药物研究中的应用[J]. 药学学报, 2013,48(5): 621-634