药学学报, 2014, 49(10): 1365-1371
引用本文:
赵双双, 邵荣光, 何红伟. 抗肝纤维化的潜在作用靶点[J]. 药学学报, 2014, 49(10): 1365-1371.
ZHAO Shuang-shuang, SHAO Rong-guang, HE Hong-wei. Potential targets for anti-liver fibrosis[J]. Acta Pharmaceutica Sinica, 2014, 49(10): 1365-1371.

抗肝纤维化的潜在作用靶点
赵双双, 邵荣光, 何红伟
中国医学科学院、北京协和医学院医药生物技术研究所, 北京 100050
摘要:
肝纤维化是肝脏内弥漫性细胞外基质特别是I型胶原α1过度沉积的病理过程,最终导致肝硬化或者肝功能衰竭。由于肝纤维化及肝硬化前期可以逆转,因此控制肝纤维化这一可逆的过程,对于肝硬化和肝功能衰竭的预防及治疗十分重要。本文在大量文献基础上,就潜在的抗肝纤维化靶点予以综述,包括致肝纤维化最重要的细胞因子之一TGF-β1以及近期发现的整合素αV等,旨在为预防或治疗肝纤维化提供新的途径。
关键词:    肝纤维化      肝星状细胞      转化生长因子β1      细胞外基质     
Potential targets for anti-liver fibrosis
ZHAO Shuang-shuang, SHAO Rong-guang, HE Hong-wei
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Liver fibrosis is a pathological process of the excessive accumulation of extracellular matrix, especially collagen α1 (I) in liver. Ultimately, hepatic fibrosis leads to cirrhosis or hepatic failure. Liver fibrosis and early cirrhosis can be reversed, thus control of the development of liver fibrosis is very important for preventive treatment of cirrhosis and hepatic failure. This is a review of potential targets for anti-hepatic fibrosis based on plenty of publications, including TGF-β1 and integrin αV and so on, aimed at providing novel therapeutic targets in liver fibrosis.
Key words:    liver fibrosis    hepatic stellate cell    transforming growth factor-β1    extracellular matrix   
收稿日期: 2014-04-24
基金项目: 国家自然科学基金资助项目(81170409);中国肝炎防治基金会—王宝恩肝纤维化研究基金资助课题(20110026);国家“重大新药创制”科技重大专项(2012ZX09301002-001)
通讯作者: 何红伟,Tel/Fax:86-10-83166673,E-mail:hehwei@imb.pumc.edu.cn
Email: hehwei@imb.pumc.edu.cn
相关功能
PDF(302KB) Free
打印本文
0
作者相关文章
赵双双  在本刊中的所有文章
邵荣光  在本刊中的所有文章
何红伟  在本刊中的所有文章

参考文献:
[1] Bataller R, Brenner DA. Liver fibrosis [J]. J Clin Invest, 2005, 115: 209-218.
[2] Fallowfield J, Hayes P. Pathogenesis and treatment of hepatic fibrosis: is cirrhosis reversible? [J]. Clin Med, 2011, 11: 179-183.
[3] Guo J, Friedman SL. Hepatic fibrogenesis [J]. Semin Liver Dis, 2007, 27: 413-426.
[4] Wu JY, Liu GT. The roles of Kupffer cells in the develop-ment and regression of liver fibrosis [J]. Acta Pharm Sin (药学学报), 2008, 43: 884-889.
[5] Liu B, Zhang X, Zhang FC, et al. Aberrant TGF-beta1 signaling contributes to the development of primary biliary cirrhosis in murine model [J]. World J Gastroenterol, 2013, 19: 5828-5836.
[6] Lee WR, Kim KH, An HJ, et al. Apamin inhibits hepatic fibrosis through suppression of transforming growth factor β1-induced hepatocyte epithelial-mesenchymal transition [J]. Biochem Biophys Res Commun, 2014, 450: 195-201.
[7] Fan X, Zhang Q, Li S, et al. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-beta1 [J]. PLoS One, 2013, 8: e82190.
[8] Schaefer CJ, Ruhrmund DW, Pan L, et al. Antifibrotic activities of pirfenidone in animal models [J]. Eur Respir Rev, 2011, 20: 85-97.
[9] Iredale JP, Benyon RC, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors [J]. J Clin Invest, 1998, 102: 538-549.
[10] Yoshiji H, Kuriyama S, Yoshii J, et al. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse [J]. Hepatology, 2002, 36: 850-860.
[11] Roderfeld M, Weiskirchen R, Wagner S, et al. Inhibition of hepatic fibrogenesis by matrix metalloproteinase-9 mutants in mice [J]. FASEB J, 2006, 20: 444-454.
[12] Cong M, Liu T, Wang P, et al. Antifibrotic effects of a recombinant adeno-associated virus carrying small interfering RNA targeting TIMP-1 in rat liver fibrosis [J]. Am J Pathol, 2013, 182: 1607-1616.
[13] Chan CC, Hwang SJ, Lee FY, et al. Prognostic value of plasma endotoxin levels in patients with cirrhosis [J]. Scand J Gastroenterol, 1997, 32: 942-946.
[14] Chen J, Zeng B, Yao H, et al. The effect of TLR4/7 on the TGF-β-induced Smad signal transduction pathway in human keloid [J]. Burns, 2013, 39: 465-472.
[15] Seki E, De Minicis S, Österreicher CH, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis [J]. Nat Med, 2007, 13: 1324-1332.
[16] Bai T, Lian LH, Wu YL, et al. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells [J]. Int Immunopharmacol, 2013, 15: 275-281.
[17] Qian H, Shi J, Fan TT, et al. Sophocarpine attenuates liver fibrosis by inhibiting the TLR4 signaling pathway in rats [J]. World J Gastroenterol, 2014, 20: 1822-1832.
[18] Shi M, Zhu J, Wang R, et al. Latent TGF-beta structure and activation [J]. Nature, 2011, 474: 343-349.
[19] Wipff PJ, Rifkin DB, Meister JJ, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix [J]. J Cell Biol, 2007, 179: 1311-1323.
[20] Henderson NC, Arnold TD, Katamura Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs [J]. Nat Med, 2013, 19: 1617-1624.
[21] Siegmund SV, Schwabe RF. Endocannabinoids and liver disease. II. Endocannabinoids in the pathogenesis and treatment of liver fibrosis [J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294: G357-G362.
[22] Hézode C, Roudot-Thoraval F, Nguyen S, et al. Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C [J]. Hepatology, 2005, 42: 63-71.
[23] Teixeira-Clerc F, Julien B, Grenard P, et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis [J]. Nat Med, 2006, 12: 671-676.
[24] Chen S, Wu B, Xu S, et al. Suppression of CB1 cannabinoid receptor by lentivirus mediated small interfering RNA ameliorates hepatic fibrosis in rats [J]. PLoS One, 2012, 7: e50850.
[25] Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver [J]. Gastroenterology, 2005, 128: 742-755.
[26] Munoz-Luque J, Ros J, Fernandez-Varo G, et al. Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats [J]. J Pharmacol Exp Ther, 2007, 324: 475-483.
[27] Caraceni P, Domenicali M, Giannone F, et al. The role of the endocannabinoid system in liver diseases [J]. Best Pract Res Clin Endocrinol Metab, 2009, 23: 65-77.
[28] Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis [J]. J Exp Med, 2010, 207: 1589-1597.
[29] Simonsson M, Heldin CH, Ericsson J, et al. The balance between acetylation and deacetylation controls Smad7 stability [J]. J Biol Chem, 2005, 280: 21797-21803.
[30] Bian E, Huang C, Wang H, et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats [J]. Toxicol Lett, 2014, 224: 175-185.
[31] Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage [J]. Gastroenterology, 2008, 135: 642-659.
[32] Hamzavi J, Ehnert S, Godoy P, et al. Disruption of the Smad7 gene enhances CCl4-dependent liver damage and fibrogenesis in mice [J]. J Cell Mol Med, 2008, 12: 2130-2144.
[33] Zhu L, Wang L, Wang X, et al. Hepatic deletion of Smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury [J]. PLoS One, 2011, 6: e17415.
[34] Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats [J]. Gastroenterology, 2003, 125: 178-191.
[35] Halder SK, Beauchamp RD, Datta PK. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis [J]. Exp Cell Res, 2005, 307: 231-246.
[36] Bataller R, Schwabe RF, Choi YH, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis [J]. J Clin Invest, 2003, 112: 1383-1394.
[37] Wolf G. Novel aspects of the renin-angiotensin-aldosterone-system [J]. Front Biosci, 2008, 13: 4993-5005.
[38] Uhal BD, Li X, Piasecki CC, et al. Angiotensin signaling in pulmonary fibrosis [J]. Int J Biochem Cell Biol, 2012, 44: 465-468.
[39] Yang L, Bataller R, Dulyx J, et al. Attenuated hepatic inflammation and fibrosis in angiotensin type 1a receptor deficient mice [J]. J Hepatol, 2005, 43: 317-323.
[40] Colmenero J, Bataller R, Sancho-Bru P, et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C [J]. Am J Physiol Gastrointest Liver Physiol, 2009, 297: G726-G734.
[41] Granzow M, Schierwagen R, Klein S, et al. Angiotensin-II type 1 receptor-mediated Janus-kinase-2 activation induces liver fibrosis [J]. Hepatology, 2014, 60: 334-348.
[42] Wei S, Kulp SK, Chen CS. Energy restriction as an antitumor target of thiazolidinediones [J]. J Biol Chem, 2010, 285: 9780-9791.
[43] Wang Z, Xu JP, Zheng YC, et al. Peroxisome proliferator-activated receptor gamma inhibits hepatic fibrosis in rats [J]. Hepatobiliary Pancreat Dis Int, 2011, 10: 64-71.
[44] Bae MA, Rhee SD, Jung WH, et al. Selective inhibition of activated stellate cells and protection from carbon tetrachloride-induced liver injury in rats by a new PPARγ agonist KR62776 [J]. Arch Pharm Res, 2010, 33: 433-442.
[45] Yang MD, Chiang Y, Higashiyama R, et al. Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor γ in hepatic stellate cells for their antifibrotic effect [J]. Hepatology, 2012, 55: 1271-1281.
[46] Attia YM, Elalkamy EF, Hammam OA, et al. Telmisartan, an AT1 receptor blocker and a PPAR gamma activator, alleviates liver fibrosis induced experimentally by Schistosoma mansoni infection [J]. Parasit Vectors, 2013, 6: 199.
[47] Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis [J]. N Engl J Med, 2006, 355: 2297-2307.
[48] Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis [J]. Hepatology, 2011, 53: 209-218.
[49] Ogawa T, Iizuka M, Sekiya Y, et al. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells [J]. Biochem Biophys Res Commun, 2010, 391: 316-321.
[50] Kwiecinski M, Noetel A, Elfimova N, et al. Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction [J]. PLoS One, 2011, 6: e24568.
[51] Kwiecinski M, Elfimova N, Noetel A, et al. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29 [J]. Lab Invest, 2012, 92: 978-987.
[52] Zhang Y, Wu L, Wang Y, et al. Protective role of estrogen-induced miRNA-29 expression in carbon tetrachloride-induced mouse liver injury [J]. J Biol Chem, 2012, 287: 14851-14862.
[53] Weng HL, Wang BE, Jia JD, et al. Effect of interferon-gamma on hepatic fibrosis in chronic hepatitis B virus infection: a randomized controlled study [J]. Clin Gastroenterol Hepatol, 2005, 3: 819-828.
[54] Bahcecioglu IH, Koca SS, Poyrazoglu OK, et al. Hepatoprotective effect of infliximab, an anti-TNF-alpha agent, on carbon tetrachloride-induced hepatic fibrosis [J]. Inflammation, 2008, 31: 215-221.
[55] Tilg H, Jalan R, Kaser A, et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis [J]. J Hepatol, 2003, 38: 419-425.
[56] Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis [J]. Gastroenterology, 2004, 127: 1497-1512.
[57] Hattori S, Dhar DK, Hara N, et al. FR-167653, a selective p38 MAPK inhibitor, exerts salutary effect on liver cirrhosis through downregulation of Runx2 [J]. Lab Invest, 2007, 87: 591-601.
[58] He H, Mennone A, Boyer JL, et al. Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells [J]. Hepatology, 2011, 53: 548-557.
[59] Yu DK, Gao Y, Zhang CX, et al. Whole genome analysis of the effect of retinoic acid on liver fibrosis [J]. Chin Pharmacol Bull (中国药理学通报), 2013, 29: 1213-1216.
相关文献:
1.平 洁 高爱梅 徐 丹 李瑞雯 汪 晖.吲哚-3-原醇对猪血清诱导大鼠肝纤维化的治疗作用[J]. 药学学报, 2011,46(8): 915-921
2.吴俊燏;刘耕陶.Kupffer细胞在肝纤维化形成与转归中的作用[J]. 药学学报, 2008,43(9): 884-889