药学学报, 2014, 49(10): 1377-1386
引用本文:
肖文璟, 王广基, 阿基业. 肿瘤细胞中药物代谢酶表达和活性的研究与进展[J]. 药学学报, 2014, 49(10): 1377-1386.
XIAO Wen-jing, WANG Guang-ji, A Ji-ye. A review of the expression and activity of drug metabolism enzymes in tumorous cells[J]. Acta Pharmaceutica Sinica, 2014, 49(10): 1377-1386.

肿瘤细胞中药物代谢酶表达和活性的研究与进展
肖文璟, 王广基, 阿基业
中国药科大学药物代谢动力学重点实验室, 江苏 南京 210009
摘要:
肿瘤细胞具有十分独特的生存与代谢模式,研究肿瘤细胞的药物代谢特征对于了解药物在肿瘤细胞中的代谢和消除快慢进而评估并预测药效、基于代谢特征优化抗肿瘤药物/前体药物设计具有重要意义。本文综述了肝、肠、乳腺和肺等常见癌组织的主要药物代谢相关酶的表达/活性及其与正常组织的差异,阐述了部分典型抗肿瘤药物在肿瘤组织中的代谢特征,结合对应的常用体外培养肿瘤细胞株中药物代谢酶的表达/活性特征,探讨实体肿瘤组织(体内)和肿瘤细胞株(体外)中酶表达与功能的异同性及差异的产生原因。
关键词:    肿瘤组织/细胞      体外培养细胞株      药物代谢酶      药物设计     
A review of the expression and activity of drug metabolism enzymes in tumorous cells
XIAO Wen-jing, WANG Guang-ji, A Ji-ye
Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
Abstract:
Tumorous cells are characterized by distinctive metabolic reprogramming and living conditions. Understanding drug metabolizing features in tumor cells will not only favor the estimation of metabolic rate, elimination half life and the assessment of potency, but also facilitate the optimal design of anti-tumor drugs/prodrugs. This article reviewed the expression and activity features of major drug metabolizing enzymes (DMEs) in solid tumorous tissues, such as liver, intestine, breast and lung, and the difference from the correspondingly normal tissues, exemplified by the metabolic properties of some classic antitumor-agents in tumorous tissues. In combination with the data retrieved in vitro tumor cell lines, we discussed the similarities and differences of DMEs expression and function between tumor tissues (in vitro) and tumor cells (in vitro), and proposed the possible factors that cause the differences.
Key words:    tumor tissue/cell    in vitro cell line    drug metabolizing enzyme    drug design   
收稿日期: 2014-03-14
基金项目: 江苏省自然科学基金资助项目(BK2012762)
通讯作者: 阿基业,Tel:86-25-83271176,Fax:86-25-83271060,E-mail:jiyea@cpu.edu.cn
Email: jiyea@cpu.edu.cn
相关功能
PDF(370KB) Free
打印本文
0
作者相关文章
肖文璟  在本刊中的所有文章
王广基  在本刊中的所有文章
阿基业  在本刊中的所有文章

参考文献:
[1] DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation [J]. Cell Metab, 2008, 7: 11-20.
[2] Androutsopoulos VP, Spyrou I, Ploumidis A, et al. Expression profile of CYP1A1 and CYP1B1 enzymes in colon and bladder tumors [J]. PLoS One, 2013, 8: e82487.
[3] Bellemare J, Rouleau M, Harvey M, et al. Immunohisto-chemical expression of conjugating UGT1A-derived isoforms in normal and tumoral drug-metabolizing tissues in humans [J]. J Pathol, 2011, 223: 425-435.
[4] Travica S, Pors K, Loadman PM, et al. Colon can-cer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins [J]. Clin Cancer Res, 2013, 19: 2952-2961.
[5] Brown GT, Cash BG, Blihoghe D, et al. The expression and prognostic significance of retinoic Acid metabolising enzymes in colorectal cancer [J]. PLoS One, 2014, 9: e90776.
[6] Fahy BN, Guo T, Ghose R. Impact of hepatic malignancy on CYP3A4 gene expression [J]. J Surg Res, 2012, 178: 768-772.
[7] el Mouelhi M, Didolkar MS, Elias EG, et al. Hepatic drug-metabolizing enzymes in primary and secondary tumors of human liver [J]. Cancer Res, 1987, 47: 460-466.
[8] Kurzawski M, Dziedziejko V, Post M, et al. Expression of genes involved in xenobiotic metabolism and transport in end-stage liver disease: up-regulation of ABCC4 and CYP1B1 [J]. Pharmacol Rep, 2012, 64: 927-939.
[9] Rongrong G, Chao J, Feng Z, et al. Phase II metabolism characteristics of mycophenolic acid in the human liver tumor cells [J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2013: 961-968.
[10] Donato MT, Lahoz A, Castell JV, et al. Cell lines: a tool for in vitro drug metabolism studies [J]. Curr Drug Metab, 2008, 9: 1-11.
[11] Westerink WM, Schoonen WG. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells [J]. Toxicol In Vitro, 2007, 21: 1592-1602.
[12] Andersson TB, Kanebratt KP, Kenna JG. The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human [J]. Expert Opin Drug Metab Toxicol, 2012, 8: 909-920.
[13] Zanelli U, Caradonna NP, Hallifax D, et al. Comparison of cryopreserved HepaRG cells with cryopreserved human hepatocytes for prediction of clearance for 26 drugs [J]. Drug Metab Dispos, 2012, 40: 104-110.
[14] Kanebratt KP, Andersson TB. HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans [J]. Drug Metab Dispos, 2008, 36: 137-145.
[15] Gerets HH, Tilmant K, Gerin B, et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins [J]. Cell Biol Toxicol, 2012, 28: 69-87.
[16] Bourgine J, Billaut-Laden I, Happillon M, et al. Gene expression profiling of systems involved in the metabolism and the disposition of xenobiotics: comparison between human intestinal biopsy samples and colon cell lines [J]. Drug Metab Dispos, 2012, 40: 694-705.
[17] Sachse C, Smith G, Wilkie MJ, et al. A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer [J]. Carcinogenesis, 2002, 23: 1839-1849.
[18] Gilsing AM, Berndt SI, Ruder EH, et al. Meat-related mutagen exposure, xenobiotic metabolizing gene polymor-phisms and the risk of advanced colorectal adenoma and cancer [J]. Carcinogenesis, 2012, 33: 1332-1339.
[19] Bergheim I, Bode C, Parlesak A. Decreased expression of cytochrome P450 protein in non-malignant colonic tissue of patients with colonic adenoma [J]. BMC Gastroenterol, 2005, 5: 34.
[20] Martinez C, Garcia-Martin E, Pizarro RM, et al. Expres-sion of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy [J]. Br J Cancer, 2002, 87: 681-686.
[21] Paulik A, Grim J, Filip S. Predictors of irinotecan toxicity and efficacy in treatment of metastatic colorectal cancer [J]. Acta Medica (Hradec Kralove), 2012, 55: 153-159.
[22] Edler D, Stenstedt K, Ohrling K, et al. The expression of the novel CYP2W1 enzyme is an independent prognostic factor in colorectal cancer -a pilot study [J]. Eur J Cancer, 2009, 45: 705-712.
[23] Stenstedt K, Hallstrom M, Ledel F, et al. The expression of CYP2W1 in colorectal primary tumors, corresponding lymph node metastases and liver metastases [J]. Acta Oncol, 2014.
[24] Wang M, Sun DF, Wang S, et al. Polymorphic expression of UDP-glucuronosyltransferase UGTlA gene in human colorectal cancer [J]. PLoS One, 2013, 8: e57045.
[25] Tobin P, Clarke S, Seale JP, et al. The in vitro metabolism of irinotecan (CPT-11) by carboxylesterase and beta-glucuronidase in human colorectal tumours [J]. Br J Clin Pharmacol, 2006, 62: 122-129.
[26] Xiao D, Yang D, Guo L, et al. Regulation of carboxyles-terase-2 expression by p53 family proteins and enhanced anti-cancer activities among 5-fluorouracil, irinotecan and doxazolidine prodrug [J]. Br J Pharmacol, 2013, 168: 1989-1999.
[27] Kolln C, Reichl S. mRNA expression of metabolic en-zymes in human cornea, corneal cell lines, and hemicornea constructs [J]. J Ocul Pharmacol Ther, 2012, 28: 271-277.
[28] Schmiedlin-Ren P, Thummel KE, Fisher JM, et al. Induc-tion of CYP3A4 by 1 alpha,25-dihydroxyvitamin D3 is human cell line-specific and is unlikely to involve pregnane X receptor [J]. Drug Metab Dispos, 2001, 29: 1446-1453.
[29] Fisher JM, Wrighton SA, Watkins PB, et al. First-pass midazolam metabolism catalyzed by 1alpha, 25-dihydroxy vitamin D3-modified Caco-2 cell monolayers [J]. J Pharmacol Exp Ther, 1999, 289: 1134-1142.
[30] Le Ferrec E, Lagadic-Gossmann D, Rauch C, et al. Tran-scriptional induction of CYP1A1 by oltipraz in human Caco-2 cells is aryl hydrocarbon receptor-and calcium-dependent [J]. J Biol Chem, 2002, 277: 24780-24787.
[31] Lampen A, Ebert B, Stumkat L, et al. Induction of gene expression of xenobiotic metabolism enzymes and ABC-transport proteins by PAH and a reconstituted PAH mixture in human Caco-2 cells [J]. Biochim Biophys Acta, 2004, 1681: 38-46.
[32] Li R, Wang X, Zhang XY, et al. Effect of ceramide on GSTA1 in Caco-2 cells [J]. Acta Pharm Sin (药学学报), 2012: 962-965.
[33] Scharmach E, Hessel S, Niemann B, et al. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells [J]. Toxicology, 2009, 265: 122-126.
[34] Zhang H, Tolonen A, Rousu T, et al. Effects of cell differentiation and assay conditions on the UDP-glucuronosyltransferase activity in Caco-2 cells [J]. Drug Metab Dispos, 2011, 39: 456-464.
[35] Iscan M, Klaavuniemi T, Coban T, et al. The expression of cytochrome P450 enzymes in human breast tumours and normal breast tissue [J]. Breast Cancer Res Treat, 2001, 70: 47-54.
[36] El-Rayes BF, Ali S, Heilbrun LK, et al. Cytochrome p450 and glutathione transferase expression in human breast cancer [J]. Clin Cancer Res, 2003, 9: 1705-1709.
[37] Jardim BV, Moschetta MG, Gelaleti GB, et al. Glutathione transferase pi (GSTpi) expression in breast cancer: an immunohistochemical and molecular study [J]. Acta Histochem, 2012, 114: 510-517.
[38] Starlard-Davenport A, Lyn-Cook B, Radominska-Pandya A. Identification of UDP-glucuronosyltransferase 1A10 in non-malignant and malignant human breast tissues [J]. Steroids, 2008, 73: 611-620.
[39] Martinez V, Kennedy S, Doolan P, et al. Drug metabolism-related genes as potential biomarkers: analysis of expres-sion in normal and tumour breast tissue [J]. Breast Cancer Res Treat, 2008, 110: 521-530.
[40] Spink DC, Zhang F, Hussain MM, et al. Metabolism of equilenin in MCF-7 and MDA-MB-231 human breast cancer cells [J]. Chem Res Toxicol, 2001, 14: 572-581.
[41] Spink BC, Katz BH, Hussain MM, et al. SULT1A1 cata-lyzes 2-methoxyestradiol sulfonation in MCF-7 breast cancer cells [J]. Carcinogenesis, 2000, 21: 1947-1957.
[42] de Groot P, Munden RF. Lung cancer epidemiology, risk factors, and prevention [J]. Radiol Clin North Am, 2012, 50: 863-876.
[43] Li H, Li QD, Wang MS, et al. Smoking and air pollution exposure and lung cancer mortality in Zhaoyuan County [J]. Int J Hyg Environ Health, 2013, 216: 63-70.
[44] McLemore TL, Adelberg S, Liu MC, et al. Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas [J]. J Natl Cancer Inst, 1990, 82: 1333-1339.
[45] Kaminsky LS, Spivack SD. Cytochromes P450 and cancer [J]. Mol Aspects Med, 1999, 20: 70-84, 137.
[46] Toussaint C, Albin N, Massaad L, et al. Main drug-and carcinogen-metabolizing enzyme systems in human non-small cell lung cancer and peritumoral tissues [J]. Cancer Res, 1993, 53: 4608-4612.
[47] Abass K, Pelkonen O. The inhibition of major human hepatic cytochrome P450 enzymes by 18 pesticides: comparison of the N-in-one and single substrate approaches [J]. Toxicol In Vitro, 2013, 27: 1584-1588.
[48] Kivisto KT, Griese EU, Fritz P, et al. Expression of cytochrome P 450 3A enzymes in human lung: a combined RT-PCR and immunohistochemical analysis of normal tissue and lung tumours [J]. Naunyn Schmiedebergs Arch Pharmacol, 1996, 353: 207-212.
[49] Gharavi N, El-Kadi AO. Expression of cytochrome P450 in lung tumor [J]. Curr Drug Metab, 2004, 5: 203-210.
[50] Bushey RT, Lazarus P. Identification and functional characterization of a novel UDP-glucuronosyltransferase 2A1 splice variant: potential importance in tobacco-related cancer susceptibility [J]. J Pharmacol Exp Ther, 2012, 343: 712-724.
[51] Kua LF, Ross S, Lee SC, et al. UGT1A6 polymorphisms modulated lung cancer risk in a Chinese population [J]. PLoS One, 2012, 7: e42873.
[52] Gervasini G, San Jose C, Carrillo JA, et al. GST polymor-phisms interact with dietary factors to modulate lung cancer risk: study in a high-incidence area [J]. Nutr Cancer, 2010, 62: 750-758.
[53] Hukkanen J, Lassila A, Paivarinta K, et al. Induction and regulation of xenobiotic-metabolizing cytochrome P450s in the human A549 lung adenocarcinoma cell line [J]. Am J Respir Cell Mol Biol, 2000, 22: 360-366.
[54] Lechevrel M, Casson AG, Wolf CR, et al. Characterization of cytochrome P450 expression in human oesophageal mucosa [J]. Carcinogenesis, 1999, 20: 243-248.
[55] Nakajima T, Wang RS, Nimura Y, et al. Expression of cytochrome P450s and glutathione S-transferases in human esophagus with squamous-cell carcinomas [J]. Carcinogenesis, 1996, 17: 1477-1481.
[56] Finnstrom N, Bjelfman C, Soderstrom TG, et al. Detection of cytochrome P450 mRNA transcripts in prostate samples by RT-PCR [J]. Eur J Clin Invest, 2001, 31: 880-886.
[57] McFadyen MC, Melvin WT, Murray GI. Cytochrome P450 in normal human brain and brain tumours [J]. Biochem Soc Trans, 1997, 25: S577.
[58] Knupfer H, Knupfer MM, Hotfilder M, et al. P450-expression in brain tumors [J]. Oncol Res, 1999, 11: 523-528.
[59] Murray GI, Taylor VE, McKay JA, et al. Expression of xenobiotic metabolizing enzymes in tumours of the urinary bladder [J]. Int J Exp Pathol, 1995, 76: 271-276.
[60] Yokose T, Doy M, Taniguchi T, et al. Immunohistochemi-cal study of cytochrome P450 2C and 3A in human non-neoplastic and neoplastic tissues [J]. Virchows Arch, 1999, 434: 401-411.
[61] Murray GI, Taylor MC, Burke MD, et al. Enhanced expression of cytochrome P450 in stomach cancer [J]. Br J Cancer, 1998, 77: 1040-1044.
[62] Murray GI, McFadyen MC, Mitchell RT, et al. Cytochrome P450 CYP3A in human renal cell cancer [J]. Br J Cancer, 1999, 79: 1836-1842.
[63] Searchfield L, Price SA, Betton G, et al. Glutathione S-transferases as molecular markers of tumour progression and prognosis in renal cell carcinoma [J]. Histopathology, 2011, 58: 180-190.
[64] Aleksunes LM, Klaassen CD. Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARalpha-, and Nrf2-null mice [J]. Drug Metab Dispos, 2012, 40: 1366-1379.
[65] Liu ZH, Li Y. Modulation of nuclear receptors on drug-metabolizing enzymes and transporters [J]. Acta Pharm Sin (药学学报), 2012: 1575-1581.
[66] Pratt SE, Durland-Busbice S, Shepard RL, et al. Human carboxylesterase-2 hydrolyzes the prodrug of gemcitabine (LY2334737) and confers prodrug sensitivity to cancer cells [J]. Clin Cancer Res, 2013, 19: 1159-1168.