药学学报, 2014, 49(10): 1387-1394
郝大程, 肖培根, 刘明, 彭勇, 何春年. 从药用亲缘学到药用基因组亲缘学:分子系统发育、进化与药物发现[J]. 药学学报, 2014, 49(10): 1387-1394.
HAO Da-cheng, XIAO Pei-gen, LIU Ming, PENG Yong, HE Chun-nian. Pharmaphylogeny vs. pharmacophylogenomics:molecular phylogeny, evolution and drug discovery[J]. Acta Pharmaceutica Sinica, 2014, 49(10): 1387-1394.

郝大程1, 肖培根2, 刘明1, 彭勇2, 何春年2
1. 大连交通大学生物技术研究所, 环境化工学院, 辽宁 大连 116028;
2. 中国医学科学院、北京协和医学院药用植物研究所, 北京 100193
近年随着高通量测序技术的迅猛发展,生物系统发育研究中开始采用基因组数据,因此出现一些新术语,如系统发育基因组学(phylogenomics,基因组系统学/基因组亲缘学)、药用基因组亲缘学(pharmacophy- logenomics)、转录组亲缘学(phylotranscriptomics)等。系统发育基因组学是进化和基因组学的交叉学科,是将基因组数据用于进化关系重建的综合分析;药用亲缘学研究药用生物(特别是药用植物)的生物亲缘关系、化学成分和疗效(传统疗效和药理活性)间的相关性;系统发育基因组学方法可用于药物发现和开发的相关问题研究,在组学水平拓展了药用亲缘学的领域,由此衍生出药用基因组亲缘学。系统学(亲缘学)是生命科学各分支和交叉学科的根基所在,在生药学和药用生物学等药学相关领域起到提纲挈领的作用。在此对与药用亲缘学(pharmaphylogeny)密切相关的若干术语做一简要辨析。
关键词:    药用亲缘学      药用基因组亲缘学      分子系统发育      进化      药物发现     
Pharmaphylogeny vs. pharmacophylogenomics:molecular phylogeny, evolution and drug discovery
HAO Da-cheng1, XIAO Pei-gen2, LIU Ming1, PENG Yong2, HE Chun-nian2
1. Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China;
2. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
With the surge of high-throughput sequencing technology, it is becoming popular to perform the phylogenetic study based on genomic data. A bundle of new terms is emerging, such as phylogenomics, pharmacophylogenomics and phylotranscriptomics, which are somewhat overlapping with pharmaphylogeny. Phylogenomics is the crossing of evolutionary biology and genomics, in which genome data are utilized for evolutionary reconstructions. Pharmaphylogeny, advocated by Prof. Pei-gen Xiao since 1980s, focuses on the phylogenetic relationship of medicinal plants and is thus nurtured by molecular phylogeny, chemotaxonomy and bioactivity studies. Phylogenomics can be integrated into the flow chart of drug discovery and development, and extend the field of pharmaphylogeny at the omic level, thus the concept of pharmacophylogenomics could be redefined. This review gives a brief analysis of the association and the distinguished feature of the pharmaphylogeny related terms, in the context of plant-based drug discovery and sustainable utilization of pharmaceutical resource.
Key words:    pharmaphylogeny    pharmacophylogenomics    molecular phylogeny    evolution    drug discovery   
收稿日期: 2014-04-21
基金项目: 科技部国家支撑计划(2012BAI29B01)
通讯作者: 郝大程,Tel:86-411-84572552,E-mail:hao@djtu.edu.cn;肖培根,E-mail:xiaopg@public.bta.net.cn
Email: hao@djtu.edu.cn;xiaopg@public.bta.net.cn
PDF(1098KB) Free
郝大程  在本刊中的所有文章
肖培根  在本刊中的所有文章
刘明  在本刊中的所有文章
彭勇  在本刊中的所有文章
何春年  在本刊中的所有文章

[1] Hao DC, Xiao PG, Huang BL, et al. Interspecific relation-ships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences [J]. Plant Syst Evol, 2008, 276: 89-104.
[2] Hao DC, Huang BL, Yang L. Phylogenetic relationship within the genus Taxus inferred from protein-coding genes and non-protein-coding DNA sequences [J]. Biol Pharm Bull, 2008, 31: 260-265.
[3] Hao DC, Xiao PG, Peng Y, et al. Research progress and trend analysis of biology and chemistry of Taxus medicinal resources [J]. Acta Pharm Sin (药学学报), 2012, 47: 827-835.
[4] Zhu M, Xiao PG. Chemosystematic studies on Thalictrum L. in China [J]. Acta Phytotaxo Sin (植物分类学报), 1991, 29: 358-369.
[5] Hofberger JA, Lyons E, Edger PP, et al. Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family [J]. Genome Biol Evol, 2013, 5: 2155-2173.
[6] Manrique-Carpintero NC, Tokuhisa JG, Ginzberg I, et al. Sequence diversity in coding regions of candidate genes in the glycoalkaloid biosynthetic pathway of wild potato species [J]. G3 (Bethesda), 2013, 3: 1467-1479.
[7] Dutartre L, Hilliou F, Feyereisen R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster [J]. BMC Evol Biol, 2012, 12: 64.
[8] Takos AM, Knudsen C, Lai D, et al. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway [J]. Plant J, 2011, 68: 273-286.
[9] Cosner ME, Raubeson LA, Jansen RK. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes [J]. BMC Evol Biol, 2004, 4: 27.
[10] Henriquez CL, Arias T, Pires JC, et al. Phylogenomics of the plant family Araceae [J]. Mol Phylogenet Evol, 2014, 75: 91-102.
[11] Wu CS, Chaw SM, Huang YY. Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads [J]. Genome Biol Evol, 2013, 5: 243-254.
[12] Malé PJ, Bardon L, Besnard G, et al. Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family [J]. Mol Ecol Resour, 2014, doi: 10.1111/1755-0998.12246.
[13] Xi Z, Ruhfel BR, Schaefer H, et al. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales [J]. Proc Natl Acad Sci USA, 2012, 109: 17519-17524.
[14] Barrett CF, Specht CD, Leebens-Mack J, et al. Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? [J]. Ann Bot, 2014, 113: 119-133.
[15] He K, Jiang XL. Sky islands of southwest China. I: an overview of phylogeographic patterns [J]. Chin Sci Bull, 2014, 59: 585-597.
[16] Whittall JB, Syring J, Parks M, et al. Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines [J]. Mol Ecol, 2010, 19 (S1): 100-114.
[17] Koonin EV, Wolf YI. Evolution of microbes and viruses: a paradigm shift in evolutionary biology? [J]. Front Cell Infect Microbiol, 2012, 2: 119.
[18] Kohonen P, Nera KP, Lassila O. Avian model for B-cell immunology -new genomes and phylotranscriptomics [J]. Scand J Immunol, 2007, 66: 113-121.
[19] Hao DC, Ma P, Mu J, et al. De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum [J]. Sci China Life Sci, 2012, 55: 452-466.
[20] Chan CX, Zäuner S, Wheeler G, et al. Analysis of Por-phyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems [J]. Plant Physiol, 2012, 158: 2001-2012.
[21] Villar M, Popara M, Mangold AJ, et al. Comparative proteomics for the characterization of the most relevant Amblyomma tick species as vectors of zoonotic pathogens worldwide [J]. J Proteomics, 2013, 105: 204-216.
[22] Martin DI, Singer M, Dhahbi J, et al. Phyloepigenomic comparison of great apes reveals a correlation between somatic and germline methylation states [J]. Genome Res, 2011, 21: 2049-2057.
[23] Brindefalk B, Ettema TJ, Viklund J, et al. A phylometage-nomic exploration of oceanic alphaproteobacteria reveals mitochondrial relatives unrelated to the SAR11 clade [J]. PLoS One, 2011, 6: e24457.
[24] Searls DB. Pharmacophylogenomics: genes, evolution and drug targets [J]. Nat Rev Drug Discov, 2003, 2: 613-623.
[25] Hao DC, Yang L, Huang BL. Molecular evolution of paclitaxel biosynthetic genes TS and DBAT of Taxus species [J]. Genetica, 2009, 135: 123-135.
[26] Hao DC, Xiao PG. Prediction of sites under adaptive evolution in flavin-containing monooxygenases: selection pattern revisited [J]. Chin Sci Bull, 2011, 56: 1246-1255.
[27] Manhas R, Tripathi P, Khan S, et al. Identification and functional characterization of a novel bacterial type asparagine synthetase A: a tRNA synthetase paralog from Leishmania donovani [J]. J Biol Chem, 2014, 289: 12096-12108.
[28] Guillaume F, Otto SP. Gene functional trade-offs and the evolution of pleiotropy [J]. Genetics, 2012, 192: 1389-1409.
[29] Gomes I, Fujita W, Gupta A, et al. Identification of a μ-δ opioid receptor heteromer-biased agonist with antinociceptive activity [J]. Proc Natl Acad Sci USA, 2013, 110: 12072-12077.
[30] Wang X, Wang R, Zhang Y, et al. Evolutionary survey of druggable protein targets with respect to their subcellular localizations [J]. Genome Biol Evol, 2013, 5: 1291-1297.
[31] Hutchins AP, Liu S, Diez D, et al. The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes [J]. Mol Biol Evol, 2013, 30: 1172-1187.
[32] Gladki A, Kaczanowski S, Szczesny P, et al. The evolutionary rate of antibacterial drug targets [J]. BMC Bioinformatics, 2013, 14: 36.
[33] Xiao PG, Wang FP, Gao F, et al. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China [J]. Acta Phytotaxo Sin (植物分类学报), 2006, 44: 1-46.
[34] Wang W, Liu Y, Yu SX, et al. Gymnaconitum, a new genus of Ranunculaceae endemic to the Qinghai-Tibetan Plateau [J]. Taxon, 2013, 62: 713-722.
[35] Hao DC, Gu XJ, Xiao PG, et al. Recent advances in the chemical and biological studies of Aconitum pharmaceutical resources [J]. J Chin Pharm Sci, 2013, 22: 209-221.
[36] Hao DC, Xiao PG, Ma HY, et al. Mining chemodiversity from biodiversity: pharmacophylogeny of medicinal plants of the Ranunculaceae [J]. Chin J Nat Med (中国天然药物), 2014, In press.
[37] Xiao PG. A preliminary study of the correlation between phylogeny, chemical constituents and pharmaceutical aspects in the taxa of Chinese Ranunculaceae [J]. Acta Phytotaxo Sin (植物分类学报), 1980, 18: 142-153.
[38] Xiao PG, Wang LW, Lü SJ, et al. Statistical analysis of the ethnopharmacologic data based on Chinese medicinal plants by electronic computer I. Magnoliidae [J]. Chin J Integr Tradit West Med (中西医结合杂志), 1986, 6: 253-256.
[39] Peng Y, Chen SB, Chen SL, et al. Preliminary pharmaphy-logenetic study on Ranunculaceae [J]. China J Chin Mater Med (中国中药杂志), 2006, 31: 1124-1128.
[40] Peng Y, Chen SB, Liu Y, et al. Pharmaphylogenetic study on Isopyroideae (Ranunculaceae) [J]. China J Chin Mater Med (中国中药杂志), 2006, 31: 1210-1214.
[41] Wang W, Lu AM, Ren Y, et al. Phylogeny and classifica-tion of Ranunculales evidence from four molecular loci and morphological data [J]. Persp Plant Ecol Evol Syst, 2009, 11: 81-110.
[42] Hao DC, Gu XJ, Xiao PG, et al. Chemical and biological research of Clematis medicinal resources [J]. Chin Sci Bull, 2013, 58: 1120-1129.
[43] Gao JC, Peng Y, Yang MS, et al. A preliminary pharmaco-phylogenetic study of tribe Cimicifugeae (Ranunculaceae) [J]. J Syst Evol, 2008, 46: 516-536.
[44] Hao DC, Gu XJ, Xiao PG, et al. Recent advances in chemical and biological studies on Cimicifugeae pharmaceutical resources [J]. Chin Herb Med, 2013, 5: 81-95.
[45] Hao DC, Gu XJ, Xiao PG, et al. Phytochemical and biological research of Fritillaria medicinal resources [J]. Chin J Nat Med (中国天然药物), 2013, 11: 330-344.
[46] Hao DC, Gu XJ, Xiao PG, et al. Research progress in the phytochemistry and biology of Ilex pharmaceutical resources [J]. Acta Pharm Sin B, 2013, 3: 8-19.
[47] Xu LJ, Liu HT, Peng Y, et al. A preliminary pharmacophy-logenetic investigation in Schisandraceae [J]. J Syst Evol, 2008, 46: 692-723.
[48] Li MH, Li Q, Liu Y, et al. Pharmacophylogenetic study on plants of genus Salvia L. from China [J]. Chin Herb Med, 2013, 5: 164-181.
[49] Chen SB, Peng Y, Chen SL, et al. Introduction of pharmaphylogeny [J]. World Sci Technol/Modern Tradi Chin Med Mater Med (世界科学技术-中医药现代化), 2005, 7: 97-103.