药学学报, 2014, 49(10): 1406-1412
引用本文:
潘玉婷, 郭春雨, 马晓娟, 王景尚, 刘欣, 孙明月, 张淼, 殷惠军. 人参皂苷Rb3对ox-LDL诱导内皮细胞氧化应激与功能障碍的类雌激素样保护作用[J]. 药学学报, 2014, 49(10): 1406-1412.
PAN Yu-ting, GUO Chun-yu, MA Xiao-juan, WANG Jing-shang, LIU Xin, SUN Ming-yue, ZHANG Miao, YIN Hui-jun. The estrogen-like protective effect of ginsenoside Rb3 on oxidative stress and dysfunction of endothelial cells induced by oxidized low-density lipoprotein[J]. Acta Pharmaceutica Sinica, 2014, 49(10): 1406-1412.

人参皂苷Rb3对ox-LDL诱导内皮细胞氧化应激与功能障碍的类雌激素样保护作用
潘玉婷1, 郭春雨2, 马晓娟2, 王景尚2, 刘欣2, 孙明月2, 张淼2, 殷惠军1,2
1. 甘肃中医学院, 甘肃 兰州 730000;
2. 中国中医科学院西苑医院, 北京 100091
摘要:
人参皂苷Rb3(ginsenoside Rb3,GRb3)是西洋参茎叶总皂苷(Panax quinquefolius Saponin of stem and leaf,PQS)的主要入血成分之一,既往研究显示其具有雌激素受体激动效应。本研究观察GRb3对ox-LDL诱导人脐静脉内皮细胞氧化应激与功能障碍的保护作用。药物干预后检测细胞内SOD、NOS活性与MDA含量,ELISA法进行细胞培养上清液ET-1与NO含量的测定,real time RT-PCR方法检测细胞中eNOS和iNOS的转录水平,Western blotting方法测定丝氨酸/苏氨酸蛋白激酶Akt的磷酸化水平。与ox-LDL损伤模型组相比,GRb3增高细胞内 SOD活力,降低细胞内MDA含量与总NOS活性,减少细胞ET-1和NO合成,升高eNOS的转录水平及降低iNOS的转录水平,且能调节Akt的磷酸化水平,从而发挥保护作用,给予雌激素受体抑制剂ICI182780预处理后上述保护作用消失。结果提示,GRb3可通过雌激素受体的介导发挥抗ox-LDL对内皮细胞的损伤作用,其作用效应与17β-雌二醇相似。
关键词:    人参皂苷Rb3      氧化低密度脂蛋白      氧化应激      内皮素-1      一氧化氮     
The estrogen-like protective effect of ginsenoside Rb3 on oxidative stress and dysfunction of endothelial cells induced by oxidized low-density lipoprotein
PAN Yu-ting1, GUO Chun-yu2, MA Xiao-juan2, WANG Jing-shang2, LIU Xin2, SUN Ming-yue2, ZHANG Miao2, YIN Hui-jun1,2
1. Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
2. Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
Abstract:
Ginsenoside Rb3 (GRb3) is one of the main components in plasma of Panax quinquefolius Saponin of stem and leaf (PQS), which can be into human plasma. Previous studies have found PQS has estrogen-like vascular protective effects. In the present study, we investigated the estrogen-like protective effect of GRb3 on oxidative stress and dysfunction of endothelial cells induced by oxidized low-density lipoprotein. The activities of SOD, NOS and the contents of MDA in the cell lysate were examined by enzyme method or spectrophotometry. The NO and ET-1 concentrations in the cell culture supernatant were measured by ELISA method. The iNOS and eNOS mRNA expression were measured by real time RT-PCR, while the phosphorylation levels of Akt was measured by Western blotting. The results showed that GRb3 could enhance the activity of SOD, reduce the content of MDA, increase the level of NOS, NO, ET-1 and iNOS mRNA expression while decrease the eNOS mRNA expression and the phosphorylation level of Akt. These effects were blocked by estrogen receptor antagonist ICI182780. GRb3 can play a role in protecting vascular endothelial cells by estrogen receptors, the protective mechanism is similar to 17-β estrodiol.
Key words:    ginsenosides Rb3    ox-LDL    oxidative stress    endothelin-1    nitric oxide   
收稿日期: 2014-04-21
基金项目: 国家自然科学基金资助项目(81173584);北京市自然科学基金资助项目(7122157)甘肃高校飞天学者特聘计划
通讯作者: 殷惠军,Tel/Fax:86-10-62874093,E-mail:huijunyin@yeah.net
Email: huijunyin@yeah.net
相关功能
PDF(431KB) Free
打印本文
0
作者相关文章
潘玉婷  在本刊中的所有文章
郭春雨  在本刊中的所有文章
马晓娟  在本刊中的所有文章
王景尚  在本刊中的所有文章
刘欣  在本刊中的所有文章
孙明月  在本刊中的所有文章
张淼  在本刊中的所有文章
殷惠军  在本刊中的所有文章

参考文献:
[1] Li DY, Chen HJ, Staples ED, et al. Oxidized low-density lipoprotein receptor LOX-1 and apoptosis in human atherosclerotic lesions [J]. J Cardiovasc Pharmacol Ther, 2002, 7: 147-153.
[2] Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial [J]. JAMA, 2002, 288: 321-333.
[3] Cruz MN, Agewall S, Schenck-Gustafsson K, et al. Acute dilatation to phytoestrogens and estrogen receptor subtypes expression in small arteries from women with coronary heart disease [J]. Atherosclerosis, 2008, 196: 49-58.
[4] Zhang Y. Vascular Protective Effects and Mechanism Research of PQS on Postmenopausal Women with Coronary Heart Disease (西洋参茎叶总皂苷对绝经后女性冠心病患者的血管保护效应及机制研究) [D]. Beijing: China Academy of Chinese Medical Sciences, 2013.
[5] Hu Q, Xie QH, Yin HJ, et al. Proceeding of the 6th National Conference on Environmental Chemistry (第六届全国环境 化学学术大会论文集) [C]. Shanghai: Chinese Chemical Society and Chinese Environmental Sciences Association Press, 2011: 858.
[6] Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria [J]. J Clin Invest, 1973, 52: 2745-2756.
[7] Shinozaki K, Kashiwagi A, Masada M, et al. Stress and vascular responses: oxidative stress and endothelial dysfunction in the insulin-resistant state [J]. J Pharmacol Sci, 2003, 91: 187-191.
[8] Santanam N, Ramachandran S, Parthasarathy S. Oxygen radicals, antioxidants, and lipid peroxidation [J]. Semin Reprod Endocrinol, 1998, 16: 275-280.
[9] Pan YT, Guo CY, Ma XJ, et al. The mechanisms of oxidized low density lipoprotein-induced endothelial dysfunction and the protective effects of estrogen [J]. Chin J Geriatr Cardiovasc Cerebrovasc Dis (中华老年心脑血管病志), 2014, 16: 103-106.
[10] Yen CH, Hsieh CC, Chou SY, et al. 17Beta-estradiol inhibits oxidized low density lipoprotein-induced generation of reactive oxygen species in endothelial cells [J]. Life Sci, 2001, 70: 403-413.
[11] Jougasaki M, Kugiyama K, Saito Y, et al. Suppression of endothelin-1 secretion by lysophosphatidylcholine in oxidized low density lipoprotein in cultured vascular endothelial cells [J]. Circ Res, 1992, 71: 614-619.
[12] Boulanger CM, Tanner FC, Bea ML, et al. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium [J]. Circ Res, 1992, 70: 1191-1197.
[13] Horio T, Kohno M, Yasunari K, et al. Stimulation of endothelin-1 release by low density and very low density lipoproteins in cultured human endothelial cells [J]. Atherosclerosis, 1993, 101: 185-190.
[14] He Y, Kwan WC, Steinbrecher UP. Effects of oxidized low density lipoprotein on endothelin secretion by cultured endothelial cells and macrophages [J]. Atherosclerosis, 1996, 119: 107-118.
[15] Xu H, Duan J, Wang W, et al. Reactive oxygen species mediate oxidized low-density lipoprotein-induced endothelin-1 gene expression via extracellular signal-regulated kinase in vascular endothelial cells [J]. J Hypertens, 2008, 26: 956-963.
[16] Xu HS, Duan J, Dai S, et al. Phytoestrogen alpha-zearalanol antagonizes oxidized LDL-induced inhibition of nitric oxide production and stimulation of endothelin-1 release in human umbilical vein endothelial cells [J]. Endocrine, 2004, 25: 235-245.
[17] Lerman A, Webster MW, Chesebro JH, et al. Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs [J]. Circulation, 1993, 88: 2923-2928.
[18] Ihling C, Szombathy T, Bohrmann B, et al. Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis [J]. Circulation, 2001, 104: 864-869.
[19] Mitra S, Goyal T, Mehta JL. Oxidized LDL, LOX-1 and atherosclerosis [J]. Cardiovasc Drugs Ther, 2011, 25: 419-429.
[20] Gielis JF, Lin JY, Wingler K, et al. Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders [J]. Free Radic Biol Med, 2011, 50: 765-776.
[21] Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology [J]. Br J Pharmacol, 2006, 147: S193-S201.
[22] Lee WJ, Ou HC, Hsu WC, et al. Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells [J]. J Vasc Surg, 2010, 52: 1290-1300.
[23] Tostes RC, Nigro D, Fortes ZB, et al. Effects of estrogen on the vascular system [J]. Braz J Med Biol Res, 2003, 36: 1143-1158.
[24] Kauser K, Sonnenberg D, Diel P, et al. Effect of 17beta-oestradiol on cytokine-induced nitric oxide production in rat isolated aorta [J]. Br J Pharmacol, 1998, 123: 1089-1096.
[25] Duan J, Dai S, Fang CX, et al. Phytoestrogen alpha-zearalanol antagonizes homocysteine-induced imbalance of nitric oxide/ endothelin-1 and apoptosis in human umbilical vein endothelial cells [J]. Cell Biochem Biophys, 2006, 45: 137-145.
[26] Shiojima I. Role of Akt signaling in vascular homeostasis and angiogenesis [J]. Circ Res, 2002, 90: 1243-1250.
[27] Bernelot Moens SJ, Schnitzler GR, Nickerson M, et al. Rapid estrogen receptor signaling is essential for the protective effects of estrogen against vascular injury [J]. Circulation, 2012, 126: 1993-2004.
[28] Dong S, Furutani Y, Suto Y, et al. Estrogen-like activity and dual roles in cell signaling of an Agaricus blazei Murrill mycelia-dikaryon extract [J]. Microbiol Res, 2012, 167: 231-237.
[29] Lin ZW. Mechanism of Oxidized Low-Density Lipoprotein Activating ERK and PI3K/AKT Signal Pathway (氧化低密 度脂蛋白影响细胞信号通路ERK和PI3K/Akt的研究) [D]. Dalian: Dalian Medical University, 2011.
[30] Ou HC, Hsieh YL, Yang NC, et al. Ginkgo biloba extract attenuates oxLDL-induced endothelial dysfunction via an AMPK-dependent mechanism [J]. J Appl Physiol (1985), 2013, 114: 274-285.
[31] Hardie DG, Scott JW, Pan DA, et al. Management of cellular energy by the AMP-activated protein kinase system [J]. FEBS Lett, 2003, 546: 113-120.