药学学报, 2014, 49(10): 1457-1465
引用本文:
朱红艳, 朱景平, 谢爱梅, 袁静, 花烨, 张伟. 肿瘤靶向高分子碲化镉量子点复合纳米粒的制备及其表征[J]. 药学学报, 2014, 49(10): 1457-1465.
ZHU Hong-yan, ZHU Jing-ping, XIE Ai-mei, YUAN Jing, HUA Ye, ZHANG Wei. Preparation and characterization of tumor targeted CdTe quantum dots modified with functional polymer[J]. Acta Pharmaceutica Sinica, 2014, 49(10): 1457-1465.

肿瘤靶向高分子碲化镉量子点复合纳米粒的制备及其表征
朱红艳, 朱景平, 谢爱梅, 袁静, 花烨, 张伟
南通大学药学院, 江苏 南通 226001
摘要:
本文采用水热法合成N-乙酰-L-半胱氨酸稳定的碲化镉量子点(CdTe quantum dots,CdTe QDs),采用配体置换的方法制备得到氨基脱氧葡萄糖(2-amino-2-deoxy-D-glucose,DG)、聚乙二醇(polyethylene glycol,PEG)与9聚精氨酸(9-D-arginine,9R)共同修饰的碲化镉量子点(9R/DG-CdTe QDs)。通过紫外、荧光光谱、傅里叶红外光谱、核磁共振氢谱、高效液相-质谱联用、聚丙烯酰胺凝胶电泳和透射电子显微镜等手段对该复合量子点进行表征,并对该复合纳米粒的生物相容性、肿瘤靶向性及穿细胞膜的效果进行考察。结果表明,通过配体置换的方法可以成功构建DG、9R、PEG修饰的CdTe QDs复合纳米粒。TEM结果显示,该纳米粒分散性较好,粒径约为8~10 nm。化学修饰后的CdTe QDs吸收峰从480 nm红移至510 nm,发射峰从627 nm红移至659 nm。通过DG、9R、PEG的修饰还能进一步改善量子点的生物相容性,提高对葡萄糖转运体1高表达的肿瘤细胞的靶向性,增加量子点穿过细胞膜进入细胞浆的作用。
关键词:    量子点      氨基葡萄糖      聚乙二醇      精氨酸      肿瘤     
Preparation and characterization of tumor targeted CdTe quantum dots modified with functional polymer
ZHU Hong-yan, ZHU Jing-ping, XIE Ai-mei, YUAN Jing, HUA Ye, ZHANG Wei
School of Pharmacy, Nantong University, Nantong 226001, China
Abstract:
N-acetyl-L-cysteine (NAC) capped quantum dots (QDs) were synthesized by a hydrothermal method and coated with 2-amino-2-deoxy-D-glucose (DG), polyethylene glycol (PEG), and 9-D-arginine (9R). The optical properties, morphology and structure of 9R/DG-coated CdTe QDs were characterized by ultraviolet-visible spectrometry, fluorescence spectrum, fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), liquid chromatography-mass spectrometer (LC-MS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transmission electron micrographs (TEM). Furthermore, the biocompatibility, tumor targeted ability and transmembrane action of 9R/DG-coated CdTe QDs were studied. Results indicated that 9R/DG-coated CdTe QDs was constructed successfully by ligand exchange. The 9R/DG-coated CdTe QDs with the size of 8-10 nm had good dispersity and the absorbance and fluorescence peaks of CdTe QDs after modification were red shifted from 480 nm to 510 nm and 627 nm to 659 nm, respectively. In addition, the CdTe QDs modified by PEG, DG and 9R displayed good biocompatibility, high targeted ability to the cancer cells with glucose transporter type 1 (GLUT1) receptor high expression and obvious transmembrane ability.
Key words:    quantum dot    glucosamine    polyethylene glycol    arginine    neoplasm   
收稿日期: 2014-04-10
基金项目: 国家自然科学青年基金项目(81202467);江苏省青年科学基金项目(BK2012232);江苏省教育厅高校自然科学研究面上项目(11KJB350004);江苏省高校优势学科建设工程资助项目
通讯作者: 张 伟,Tel/Fax:86-513-85051728,E-mail:zhangwntu@163.com
Email:
相关功能
PDF(5147KB) Free
打印本文
0
作者相关文章
朱红艳  在本刊中的所有文章
朱景平  在本刊中的所有文章
谢爱梅  在本刊中的所有文章
袁静  在本刊中的所有文章
花烨  在本刊中的所有文章
张伟  在本刊中的所有文章

参考文献:
[1] Clarke SJ, Hollmann CA, Zhang Z, et al. Photophysics of dopamine-modified quantum dots and effects on biological systems [J]. Nat Mater, 2006, 5: 409-417.
[2] Smith AM, Duan HW, Mohs AM, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging [J]. Adv Drug Deliv Rev, 2008, 60: 1226-1240.
[3] Ding RM, He H, Li J. Research progress of polyami-doamine dendrimer in targeting drug delivery system [J]. Acta Pharm Sin (药学学报), 2011, 46: 493-501.
[4] Hashim Z, Howes P, Green M. Luminescent quantum-dot sized conjugated polymer nanoparticles-nanoparticle formation in a miniemulsion system [J]. J Mater Chem, 2011, 21: 1797-1803.
[5] Shi DL, Bedford NM, Cho HS. Engineered multifunctional nanocarriers for cancer diagnosis and therapeutics [J]. Small, 2011, 7: 2549-2567.
[6] Bruchez M Jr, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281: 2013-2016.
[7] Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281: 2016-2018.
[8] Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging [J]. Chem Soc Rev, 2010, 39: 3031-3056.
[9] Su HP, Xu HY, Gao S, et al. Microwave synthesis of nearly monodisperse core/multishell quantum dots with cell imaging applications [J]. Nanoscale Res Lett, 2010, 5: 625-630.
[10] Sun DP, Yang K, Zheng G, et al. Study on effect of pep-tide-conjugated near-infrared fluorescent quantum dots on the clone formation, proliferation, apoptosis, and tumorigenicity ability of human buccal squamous cell carcinoma cell line BcaCD885 [J]. Int J Nanomed, 2010, 5: 401-405.
[11] Giljohann DA, Mirkin CA. Drivers of biodiagnostic development [J]. Nature, 2009, 462: 461-464.
[12] Zeng QH, Zhang YL, Liu XM, et al. Multiple homogene-ous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform [J]. Chem Commun (Camb), 2012, 48: 1781-1783.
[13] Chen C, Sun SR, Gong YP, et al. Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2 [J]. Biomaterials, 2011, 32: 7592-7599.
[14] Jang EJ, Kim SY, Koh WG. Microfluidic bioassaysystem based on microarrays of hydrogel sensing elements entrapping quantum dot-enzyme conjugates [J]. Biosens Bioelectron, 2012, 31: 529-536.
[15] Liu L, Zhang J, Su X, et al. In vitro and In vivo assess-ment of CdTe and CdHgTe toxicity and clearance [J]. J Biomed Nanotechnol, 2008, 4: 524-528.
[16] Choi SJ, Oh JM, Choy JH. Toxicological effects of inor-ganic nanoparticles on human lung cancerA549 cells [J]. J Inorg Biochem, 2009, 103: 463-471.
[17] Zhao MX, Xia Q, Feng XD, et al. Synthesis, biocompatibility and cell labeling of L-arginine-functional β-cyclodextrin-modified quantum dot probes [J]. Biomaterials, 2010, 31: 4401-4408.
[18] Biju V, Mundayoor S, Omkumar RV, et al. Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues [J]. Biotechnol Adv, 2010, 28: 199-213.
[19] Shuhendler AJ, Prasad P, Chan HK, et al. Hybrid quantum dot-fatty ester stealth nanoparticles: toward clinically relevant in vivo optical imaging of deep tissue [J]. ACS Nano, 2011, 5: 1958-1966.
[20] Gérard VA, Maguire CM, Bazou D, et al. Folic acid modi-fied gelatine coated quantum dots as potential reagents for in vitro cancer diagnostics [J]. J Nanobiotechnol, 2011, 9: 50-56.
[21] Giacomelli C, Schmidt V, Borsali R. Nanocontainers formed by self-assembly of poly(ethyleneoxide)-b-poly(glycerol mono-methacrylate)-drug conjugates [J]. Macromolecules, 2007, 40: 2148-2157.
[22] Morita T, Horikiri Y, Suzuki T, et al. Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): characterization and application to entrapment into biodegradable microspheres [J]. Int J Pharm, 2001, 219: 127-137.
[23] Lovrić J, Bazzi HS, Cuie Y, et al. Differences in subcellu-lar distribution and toxicity of green and red emitting CdTe quantum dots [J]. J Mol Med, 2005, 83: 377-385.
[24] Pinaud F, King D, Moore HP, et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides [J]. J Am Chem Soc, 2004, 126: 6115-6123.
[25] Yao T, Zhao Q, Qiao Z, et al. Chemical synthesis, struc-tural characterization, optical properties, and photocatalytic activity of ultrathin ZnSe nanorods [J]. Chem Eur J, 2011, 17: 8663-8670.
[26] Warburg O. On the origin of cancer cells [J]. Science, 1956, 123: 309-314.
[27] Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond [J]. Pharmacol Ther, 2009, 121: 29-40.
[28] Nijsten MW, Van-dam GM. Hypothesis: using the War-burg effect against cancer by reducing glucose and providing lactate [J]. Med Hypotheses, 2009, 73: 48-51.
[29] Chen J, Chen HY, Cui SS, et al. Glucosamine derivative modified nanostructured lipid carriers for targeted tumor delivery [J]. J Mater Chem, 2012, 22: 5770-5783.
[30] Lindgren M, Hällbrink M, Prochiantz A, et al. Cell-penetrating peptides [J]. Trends Pharmacol Sci, 2000, 21: 99-103.
[31] Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system [J]. Nature, 2007, 448: 39-43.
[32] Fuchs SM, Raines RT. Internalization of cationic peptides: the road less (or more?) traveled [J]. Cell Mol Life Sci, 2006, 63: 1819-1822.
相关文献:
1.赵美霞, 李 洋, 王超杰.叶酸受体靶向性的γ-环糊精-叶酸包合物修饰的 CdSe/ZnS量子点的合成及其生物活性[J]. 药学学报, 2013,48(4): 566-572
2.张剑锋;魏东芝;周雄;江峰.甲氨蝶呤-聚乙二醇偶联物的合成及其体外抗肿瘤活性[J]. 药学学报, 2007,42(6): 607-610