药学学报, 2014, 49(12): 1639-1643
引用本文:
张利, 魏刚, 陆伟跃. 可活化细胞穿膜肽在肿瘤治疗领域的应用[J]. 药学学报, 2014, 49(12): 1639-1643.
ZHANG Li, WEI Gang, LU Wei-yue. Application of activatable cell-penetrating peptide in the field of tumor therapy[J]. Acta Pharmaceutica Sinica, 2014, 49(12): 1639-1643.

可活化细胞穿膜肽在肿瘤治疗领域的应用
张利, 魏刚, 陆伟跃
复旦大学药学院药剂学教研室, 教育部智能化递药重点实验室, 上海 201203
摘要:
细胞穿膜肽 (CPP) 是具有穿透多种细胞膜功能的小分子多肽, 能携带生物活性大分子物质进入细胞.由于CPP缺乏组织选择性和靶向性, 限制了其在肿瘤治疗领域的应用.可活化细胞穿膜肽 (ACPP) 的出现给CPP的应用带来了曙光.本文重点介绍基于肿瘤微环境与正常组织之间的差异以及利用外源性物理刺激设计而成的ACPP在抗肿瘤药物靶向递送方面的应用.
关键词:    细胞穿膜肽      肿瘤      靶向递送     
Application of activatable cell-penetrating peptide in the field of tumor therapy
ZHANG Li, WEI Gang, LU Wei-yue
Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
Abstract:
Cell-penetrating peptide (CPP) is a kind of small molecular peptide which can pass through a variety of cell membranes. It can carry bioactive macromolecules into cells. Due to lacking of tissue-selecting and targeting behavior, the application of CPP in the field of tumor treatment is limited. Activatable cell-penetrating peptide (ACPP) has brought the dawn to the application of CPP. This review mainly introduces the applications of ACPP in the targeting antitumor drug delivery which was designed based on the differences between tumor microenvironment and normal tissues as well as the exogenous physical stimulation.
Key words:    cell-penetrating peptide    tumor    targeting delivery   
收稿日期: 2014-06-12
基金项目: 国家重大科学研究计划项目(973)资助项目(2013CB932502);国家自然科学基金资助项目(81172994).
通讯作者: 魏刚
Email: weigang@shmu.edu.cn
相关功能
PDF(398KB) Free
打印本文
0
作者相关文章
张利  在本刊中的所有文章
魏刚  在本刊中的所有文章
陆伟跃  在本刊中的所有文章

参考文献:
[1] Hsu CY, Iribarren C, McCulloch CE, et al. Risk factors for end-stage renal disease: 25-year follow-up [J]. Arch Intern Med, 2009, 169: 342-350.
[2] Kitada M, Kume S, Takeda-Watanabe A, et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy [J]. Clin Sci, 2013, 124: 153-164.
[3] Dorota PJ, Krystyna LS, Leopold R, et al. Nephroprotective action of sirtuin 1 (SIRT1) [J]. J Physiol Biochem, 2013, 69: 957-961.
[4] He W, Wang MZ, Zhang L, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury [J]. J Clin Invest, 2010, 120: 1056-1068.
[5] Kume S, Uzu T, Horiike M, et al. Calore restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney [J]. J Clin Invest, 2010, 120: 1043-1055.
[6] Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins [J]. Nature, 2009, 460: 587-591.
[7] Zhang S, Cai G, Fu B, et al. SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence [J]. Mech Ageing Dev, 2012, 133: 387-400.
[8] Nemoto S, Ferqusson MM, Finke T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha) [J]. J Biol Chem, 2005, 280: 16456-16460.
[9] Kim MY, Lim JH, Youn HH, et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice [J]. Diabetologia, 2013, 56: 204-217.
[10] Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation [J]. Cell Metab, 2008, 8: 347-358.
[11] Tanaka Y, Kume S, Araki S, et al. Fenofibrate, a PPARα agonist, has renoprotective effects on mice by enhancing renal lipolysis [J]. Kidney Int, 2011, 79: 871-882.
[12] Li X, Zhang S, Blander G, et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR [J]. Mol Cell, 2007, 28: 91-106.
[13] Kemper JK, Xiao Z, Ponugoti B, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states [J]. Cell Metab, 2009, 20: 392-404.
[14] Cantó C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure [J]. Curr Opin Lipidol, 2009, 20: 98-105.
[15] Sapnier G, Xu H, Xia N, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (NOx4) [J]. J Physiol Pharmacol, 2009, 60: 111-116.
[16] Xu Y, Nie L, Yin YG, et al. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells [J]. Toxicol Appl Pharmacol, 2012, 259: 395-401.
[17] Kim EJ, Kho JH, Kang MR, et al. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity [J]. Mol Cell, 2007, 28: 277-290.
[18] Kume S, Haneda M, Kanasaki K, et al. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation [J]. Free Radical Biol Med, 2006, 40: 2175-2182.
[19] Tikoo K, Tripathi DN, Kabra DG, et al. Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53 [J]. FEBS Lett, 2007, 581:1071-1078.
[20] Tikoo K, Singh K, Kabra D, et al. Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy [J]. Free Radic Res, 2008, 42: 397- 404.
[21] Kitada M, Kume S, Imaizumi N, et al. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/ SIRT1-independent pathway [J]. Diabetes, 2011, 60: 634- 643.
[22] Vashistha H, Meggs L. Diabetic nephropathy: lessons from the mouse [J]. Ochsner J, 2013, 13: 140-146.
[23] Wu L, Zhang Y, Ma X, et al. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats [J]. Mol Biol Rep, 2012, 39: 9085-9093.
[24] Chuang PY, Dai Y, Liu R, et al. Alteration of Forkhead Box O (Foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus [J]. PLoS One, 2011, 6: e23566.
[25] Hasegawa K, Wakino S, Yoshioka K, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function [J]. J Biol Chem, 2010, 285: 13045-13056.
[26] Hasegawa K, Wakino S, Yoshioka K, et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression [J]. Biochem Biophys Res Commun, 2008, 372: 51-56.
[27] Kume S, Haneda M, Kanasaki K, et al. SIRT1 inhibits transforming growth factor β-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation [J]. J Biol Chem, 2007, 282: 151-158.
[28] Tanaka Y, Kume S, Kitada M, et al. Autophagy as a therapeutic target in diabetic nephropathy [J]. Exp Diabetes Res, 2012, doi: 10.1155/2012/628978.
[29] Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy [J]. Diabetes, 2012, 61: 23-29.
[30] Hartleben B, Gödel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice [J]. J Clin Invest, 2010, 120: 1084-1096.
[31] Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy [J]. Proc Natl Acad Sci USA, 2008, 105: 3374-3379.
[32] Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes [J]. Exp Diabetes Res, 2011, doi: 10.1155/2011/908185.
[33] Salminen A, Kaarniranta K. SIRT1: regulation of longevity via autophagy [J]. Cell Signal, 2009, 21: 1356-1360.
[34] Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling [J]. Biochim Biophys Acta, 2011, 1812: 719-731.
[35] Yoshizaki T, Milne JC, Imamura T, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes [J]. Mol Cell Biol, 2009, 29: 1363-1374.
[36] Xie J, Zhang X, Zhang L. Negative regulation of inflammation by SIRT1 [J]. Pharmacol Res, 2013, 67: 60-67.
[37] Zhu X, Liu Q, Wang M, et al. Activation of Sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts [J]. PLoS One, 2011, 6: e27081.
[38] Salminen A, Hyttinen JMT, Kaarniranta K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan [J]. J Mol Med, 2011, 89: 667-676.
[39] Li J, Qu X, Richardo SD, et al. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3 [J]. Am J Pathol, 2010, 177: 1065-1071.
[40] Liu R, Zhong Y, Li X, et al. Role of transcription factor acetylation in diabetic kidney disease [J]. Diabetes, 2014, 63: 2440-2453.
[41] Kanwar YS, Wada J, Sun L, et al. Diabetic nephropathy: mechanisms of renal disease progression [J]. Exp Biol Med, 2008, 233: 4-11.
[42] Li C, Cai F, Yang Y, et al. Tetrahydroxystilbeneglucoside ameliorates diabetic nephropathy in rats: involvement of SIRT1 and TGF-β1 pathway [J]. Eur J Pharmacol, 2010, 649: 382-389.
[43] Huang K, Huang J, Xie X, et al. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells [J]. Free Radic Biol Med, 2013, 65: 528-540.
[44] Miyazaki R, Ichiki T, Hashimoto T, et al. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells [J]. Arterioscler Thromb Vasc Biol, 2008, 28: 1263-1269.
[45] Dioum EM, Chen R, Alexander MS, et al. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylasesirtuin 1 [J]. Science, 2009, 324: 1289-1293.
[46] Hasegawa K, Wakino S, Simic P, et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes [J]. Nat Med, 2013, 19: 1496-1504.
[47] Kitada M, Koya D. Renal protective effects of resveratrol [J]. Oxid Med Cell Longev, 2013, doi: 10.1155/2013/568093.
[48] Hoffmann E, Wald J, Lavu S, et al. Pharmacokinetics and tolerability of SRT2104, a first-in-class small molecule activator of SIRT1, after single and repeated oral administration in man [J]. Br J Clin Pharmacol, 2013, 75: 186-196.
[49] Shang G, Gao P, Zhao Z, et al. 3, 5-Diiodo-l-thyronine ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats [J]. Biochim Biophys Acta, 2013, 1832: 674-684.