药学学报, 2015, 50(1): 15-20
引用本文:
吴志辉, 柴妙玲, 候佳朋, 潘俊. 用于蛋白质分子印迹的纳米骨架材料研究进展[J]. 药学学报, 2015, 50(1): 15-20.
WU Zhi-hui, CHAI Miao-ling, HOU Jia-peng, PAN Jun. Recent advances and perspective in the study of the nano-reinforcing materials for molecular imprinting of proteins[J]. Acta Pharmaceutica Sinica, 2015, 50(1): 15-20.

用于蛋白质分子印迹的纳米骨架材料研究进展
吴志辉, 柴妙玲, 候佳朋, 潘俊
复旦大学药学院, 上海 201203
摘要:
分子印迹技术是在聚合物材料的合成过程中构建与模板分子在大小、形状和结构功能上都互补的特异性结合位点, 这种材料对模板具有选择性的结合能力。尽管小分子印迹技术近年来发展迅速, 蛋白质分子印迹却由于蛋白质的体积庞大、结构灵活、构象复杂成为既有意义又具有挑战性的研究领域。本文总结了近年来蛋白质分子表面印迹技术的研究报道, 综述了用于蛋白质分子表面印迹的纳米骨架材料的研究进展和应用前景。
关键词:    分子印迹      蛋白质      纳米骨架材料     
Recent advances and perspective in the study of the nano-reinforcing materials for molecular imprinting of proteins
WU Zhi-hui, CHAI Miao-ling, HOU Jia-peng, PAN Jun
School of Pharmacy, Fudan University, Shanghai 201203, China
Abstract:
Molecular imprinting technique (MIT) involves the synthesis of polymer in the presence of a template to produce complementary binding sites in terms of its size, shape and functional group orientation. Such kind of polymer possesses specific recognition ability towards its template molecule. Despite the rapid development of MIT over the years, the majority of the template molecules that have been studied are small molecules, while molecular imprinting of proteins remains a significant yet challenging task due to their large size, structural flexibility and complex conformation. This review, we summarized the research findings over the past years, and discussed the nano-reinforcing materials used to prepare molecular imprinting of proteins and the perspective of these nano-reinforcing materials.
Key words:    molecular imprinting    protein    nano-reinforcing material   
收稿日期: 2014-06-14
基金项目: 国家自然科学基金资助项目 (30973653).
通讯作者: 潘俊
Email: Panjun@fudan.edu.cn
相关功能
PDF(612KB) Free
打印本文
0
作者相关文章
吴志辉  在本刊中的所有文章
柴妙玲  在本刊中的所有文章
候佳朋  在本刊中的所有文章
潘俊  在本刊中的所有文章

参考文献:
[1] Whitcombe MJ. Molecularly imprinted polymers: smart hydrogel crystal gardens [J]. Nat Chem, 2011, 3: 657-658.
[2] Issaq HJ, Xiao Z, Veenstra TD. Serum and plasma proteomics [J]. Chem Rev, 2007, 107: 3601-3620.
[3] Yang KG, Zhang LH, Liang Z, et al. Protein-imprinted materials: rational design, application and challenges [J]. Anal Bioanal Chem, 2012, 403: 2173-2183.
[4] Zhang MS, Huang JR, Yu P, et al. Preparation and character­istics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes [J]. Talanta, 2010, 81: 162-166.
[5] Wang Z, Li F, Xia J, et al. An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin [J]. Biosens Bioelectron, 2014, 61: 391-396.
[6] Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies [J]. Angew Chem Int Ed In Eng, 1995, 34: 1812- 1832.
[7] Ge Y, Turner APF. Too large to fit? Recent developments in macromolecular imprinting [J]. Trends Biotechnol, 2008, 26: 218-224.
[8] Janiak DS, Kofinas P. Molecular imprinting of peptides and proteins in aqueous media [J]. Anal Bioanal Chem, 2007, 389: 399-404.
[9] Singh LK, Singh M, Singh M. Biopolymeric receptor for peptide recognition by molecular imprinting approach-synthesis, characterization and application [J]. Mater Sci Eng C, 2014: 383-394.
[10] Simanek E. Far-infrared absorption in ultrafine al particles [J]. Phys Rev Lett, 1977, 38: 1161-1163.
[11] Kimhi O, Bianco-Peled H. Study of the interactions between protein-imprinted hydrogels and their templates [J]. Langmuir, 2007, 23: 6329-6335.
[12] He HY, Fu GQ, Wang Y, et al. Imprinting of protein over silica nanoparticles via surface graft copolymerization using low monomer concentration [J]. Biosens Bioelectron, 2010, 26: 760-765.
[13] Liu DJ, Yang Q, Jin SS, et al. Core-shell molecularly imprinted polymer nanoparticles with assistant recognition polymer chains for effective recognition and enrichment of natural low-abundance protein [J]. Acta Biomaterialia, 2014, 10: 769-775.
[14] Fu GQ, He HY, Chai ZH, et al. Enhanced lysozyme imprinting over nanoparticles functionalized with carboxyl groups for noncovalent template sorption [J]. Anal Chem, 2011, 83: 1431-1436.
[15] Mitchell DT, Lee SB, Trofin L, et al. Smart nanotubes for bioseparations and biocatalysis [J]. J Am Chem Soc, 2002, 124: 11864-11865.
[16] Inomata T, Konishi K. Gold nanocluster confined within a cage: template-directed formation of a hexaporphyrin cage and its confinement capability [J]. Chem Commun, 2003, (11): 1282-1283.
[17] Yang HH, Zhang SQ, Tan F, et al. Surface molecularly imprinted nanowires for biorecognition [J]. J Am Chem Soc, 2005, 127: 1378-1379.
[18] Li Y, Yang HH, You QH, et al. Protein recognition via surface molecularly imprinted polymer nanowires [J]. Anal Chem, 2006, 78: 317-320.
[19] Ouyang RZ, Lei JP, Ju HX. Surface molecularly imprinted nanowire for protein specific recognition [J]. Chem Commun, 2008, (48): 6614.
[20] Lee HY, Kim BS. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube [J]. Biosens Bioelectron, 2009, 25: 587-591.
[21] Zhou J, Gan N, Li TH, et al. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes [J]. Biosens Bioelectron, 2014, 54: 199-206.
[22] Moreira FT, Dutra RA, Noronha JP, et al. Artificial antibodies for troponin T by its imprinting on the surface of multiwalled carbon nanotubes: its use as sensory surfaces [J]. Biosens Bioelectron, 2011, 28: 243-250.
[23] Zhou J, Gan N, Hu FT, et al. A single antibody sandwich electrochemiluminescence immunosensor based on protein magnetic molecularly imprinted polymers mimicking capture probes [J]. Sensor Actuat B-Chem, 2013, 186: 300-307.
[24] Jing T, Du HR, Dai Q, et al. Magnetic molecularly imprinted nanoparticles for recognition of lysozyme [J]. Biosens Bioelectron, 2010, 26: 301-306.
[25] Cutivet A, Schembri C, Kovensky J, et al. Molecularly imprinted microgels as enzyme inhibitors [J]. J Am Chem Soc, 2009, 131: 14699-14702.
[26] Sellergren B. Molecularly imprinted polymers: shaping enzyme inhibitors [J]. Nat Chem, 2010, 2: 7-8.
[27] Hoshino Y, Koide H, Urakami T, et al. Recognition, neu­tralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody [J]. J Am Chem Soc, 2010, 132: 6644-6645.
相关文献:
1.孙寅静 罗文卿 潘 俊.蛋白质分子印迹技术的研究进展及应用前景[J]. 药学学报, 2011,46(2): 132-137