药学学报, 2015, 50(7): 797-801
引用本文:
何阳, 刘阳光, 岑山, 周金明. 前列腺癌耐药机制的研究进展[J]. 药学学报, 2015, 50(7): 797-801.
HE Yang, LIU Yang-guang, CEN Shan, ZHOU Jin-ming. The mechanisms of drug resistance in prostate cancer[J]. Acta Pharmaceutica Sinica, 2015, 50(7): 797-801.

前列腺癌耐药机制的研究进展
何阳, 刘阳光, 岑山, 周金明
中国医学科学院、北京协和医学院医药生物技术研究所, 北京 100050
摘要:
药物治疗是前列腺癌有效的治疗手段之一, 而耐药性的问题极大干扰了对前列腺癌患者的治疗。本文对前列腺癌的耐药机制研究进展进行了详细的综述, 为抗前列腺癌药物的治疗提供新思路和新靶标。
关键词:    前列腺癌      耐药      突变      可变剪接体     
The mechanisms of drug resistance in prostate cancer
HE Yang, LIU Yang-guang, CEN Shan, ZHOU Jin-ming
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Drug therapy is one of the efficient methods for prostate cancer treatment. However, drug resistance greatly hindered the treatment of prostate cancer patients. Herein, the mechanisms of drug resistance in prostate cancer have been exhaustively reviewed, and that can provide an alternative strategy and new targets for anti-prostate cancer therapy.
Key words:    prostate cancer    drug resistance    mutation    splice variant   
收稿日期: 2014-12-11
基金项目: 国家自然科学基金资助项目 (81001402, 81311120299).
通讯作者: 岑山, 周金明
Email: shan.cen@mcgill.ca;zhoujinming@imb.pumc.edu.cn
相关功能
PDF(2005KB) Free
打印本文
0
作者相关文章
何阳  在本刊中的所有文章
刘阳光  在本刊中的所有文章
岑山  在本刊中的所有文章
周金明  在本刊中的所有文章

参考文献:
[1] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014 [J]. CA Cancer J Clin, 2014, 64: 9-29.
[2] Dong Y, Zhang H, Gao AC, et al. Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers [J]. Mol Cancer Ther, 2005, 4: 1047-1055.
[3] Wang Q, Li W, Zhang Y, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer [J]. Cell, 2009, 138: 245-256.
[4] Montgomery RB, Mostaghel EA, Vessella R, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth [J]. Cancer Res, 2008, 68: 4447-4454.
[5] Tran C, Ouk S, Clegg NJ, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer [J]. Science, 2009, 324: 787-790.
[6] Reid AHM, Attard G, Barrie E, et al. CYP17 inhibition as a hormonal strategy for prostate cancer [J]. Nat Clin Pract Urol, 2008, 5: 610-620.
[7] Yin L, Hu Q. CYP17 inhibitors—abiraterone, C17, 20-lyase inhibitors and multi-targeting agents [J]. Nat Rev Urol, 2014, 11: 32-42.
[8] Mostaghel EA, Marck BT, Plymate SR, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants [J]. Clin Cancer Res, 2011, 17: 5913-5925.
[9] Chang KH, Li R, Kuri B, et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer [J]. Cell, 2013, 154: 1074-1084.
[10] Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy [J]. Nat Med, 2004, 10: 33-39.
[11] Cai C, He HH, Chen S, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1 [J]. Cancer Cell, 2011, 20: 457-471.
[12] Culig Z, Santer FR. Androgen receptor co-activators in the regulation of cellular events in prostate cancer [J]. World J Urol, 2012, 30: 297-302.
[13] Balbas MD, Evans MJ, Hosfield DJ, et al. Overcoming mutation-based resistance to antiandrogens with rational drug design [J]. eLife, 2013, 2: e00499. doi: 00410.07554/eLife. 00499.
[14] Otsuka T, Iguchi K, Fukami K, et al. Androgen receptor W741C and T877A mutations in AIDL cells, an androgen-independent subline of prostate cancer LNCaP cells [J]. Tumour Biol, 2011, 32: 1097-1102.
[15] Hara T, Miyazaki J, Araki H, et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome [J]. Cancer Res, 2003, 63: 149-153.
[16] Steketee K, Timmerman L, Ziel-van der Made AC, et al. Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer [J]. Int J Cancer, 2002, 100: 309-317.
[17] Urushibara M, Ishioka J, Hyochi N, et al. Effects of steroidal and non-steroidal antiandrogens on wild-type and mutant androgen receptors [J]. Prostate, 2007, 67: 799-807.
[18] Bohl CE, Gao W, Miller DD, et al. Structural basis for antagonism and resistance of bicalutamide in prostate cancer [J]. Proc Natl Acad Sci USA, 2005, 102: 6201-6206.
[19] Osguthorpe DJ, Hagler AT. Mechanism of androgen receptor antagonism by bicalutamide in the treatment of prostate cancer [J]. Biochemistry, 2011, 50: 4105-4113.
[20] Dehm SM, Schmidt LJ, Heemers HV, et al. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance [J]. Cancer Res, 2008, 68: 5469-5477.
[21] Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth [J]. Cancer Res, 2009, 69: 2305-2313.
[22] Sprenger CC, Plymate SR. The link between androgen receptor splice variants and castration-resistant prostate cancer [J]. Horm Cancer, 2014, 5: 207-217.
[23] Hu R, Isaacs WB, Luo J. A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities [J]. Prostate, 2011, 71: 1656-1667.
[24] Hornberg E, Ylitalo EB, Crnalic S, et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival [J]. PLoS One, 2011, 6: e19059. doi:19010.11371/journal.pone.0019059.
[25] Li Y, Chan SC, Brand LJ, et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines [J]. Cancer Res, 2013, 73: 483-489.
[26] Cao B, Qi Y, Zhang G, et al. Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy [J]. Oncotarget, 2014, 5: 1646-1656.
[27] Zhan Y, Cao B, Qi Y, et al. Methylselenol prodrug enhances MDV3100 efficacy for treatment of castration-resistant prostate cancer [J]. Int J Cancer, 2013, 133: 2225-2233.
[28] Liu C, Lou W, Zhu Y, et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration resistant prostate cancer [J]. Clin Cancer Res, 2014, 20: 3198-3210.
[29] Arora VK, Schenkein E, Murali R, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade [J]. Cell, 2013, 155: 1309-1322.
[30] Nadiminty N, Lou W, Sun M, et al. Aberrant activation of the androgen receptor by NF-B2/p52 in prostate cancer cells [J]. Cancer Res, 2010, 70: 3309-3319.
[31] Semenas J, Hedblom A, Miftakhova RR, et al. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer [J]. Proc Natl Acad Sci USA, 2014, 111: E3689-3698.
[32] Drake JM, Huang J. PIP5K1α inhibition as a therapeutic strategy for prostate cancer [J]. Proc Natl Acad Sci USA, 2014, 111: 12578-12579.
[33] Toren P, Zoubeidi A. Targeting the PI3K/Akt pathway in prostate cancer: challenges and opportunities (review) [J]. Int J Oncol, 2014, 45: 1793-1801.
[34] Wang Y, Kreisberg JI, Ghosh PM. Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer [J]. Curr Cancer Drug Targets, 2007, 7: 591-604.
[35] Toren P, Kim S, Cordonnier T, et al. Combination AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer in preclinical models [J]. Eur Urol, 2015, 67: 986-990.
[36] Jain G, Cronauer MV, Schrader M, et al. NF-κB signaling in prostate cancer: a promising therapeutic target? [J]. World J Urol, 2012, 30: 303-310.
[37] Nadiminty N, Tummala R, Liu C, et al. NF-κB2/p52 induces resistance to enzalutamide in prostate cancer: role of androgen receptor and its variants [J]. Mol Cancer Ther, 2013, 12: 1629-1637.
[38] Jin R, Yamashita H, Yu X, et al. Inhibition of NF-κB signaling restores responsiveness of castrate-resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor-variant expression [J]. Oncogene, 2014, doi:10.1038/onc.2014. 302.
[39] Jin M, Zhang T, Liu C, et al. miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells [J]. Cancer Res, 2014, 74: 4183-4195.
[40] Siu MK, Abou-Kheir W, Yin JJ, et al. Loss of EGFR signaling-regulated miR-203 promotes prostate cancer bone metastasis and tyrosine kinase inhibitors resistance [J]. Oncotarget, 2014, 5: 3770-3784.
[41] Ottman R, Nguyen C, Lorch R, et al. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance [J]. Mol Cancer, 2014. doi:10.1186/1476-4598-1113-1181.
相关文献:
1.刘思扬 庄道民 董如华 白 丽 李敬云.两种HIV非核苷类逆转录酶抑制剂耐药病毒株的体外选择和鉴定[J]. 药学学报, 2010,45(2): 241-246