药学学报, 2015, 50(7): 802-807
引用本文:
陈忱, 王辉, 魏敬双. IgG4在抗体药物亚型选择中的研究进展[J]. 药学学报, 2015, 50(7): 802-807.
CHEN Chen, WANG Hui, WEI Jing-shuang. Research progress of IgG4 in isotype selection of antibody drugs[J]. Acta Pharmaceutica Sinica, 2015, 50(7): 802-807.

IgG4在抗体药物亚型选择中的研究进展
陈忱, 王辉, 魏敬双
华北制药集团新药研究开发有限责任公司, 抗体药物研制国家重点实验室, 河北 石家庄 050015
摘要:
重组单克隆抗体对特定抗原具有专一性和有效性。人们针对不同的适应证, 已开发出许多特异性的治疗性抗体药物。目前已发现, 在抗体药物开发中IgG框架类型不仅可影响治疗性抗体的理化性质, 还可影响治疗性抗体的活性及治疗效果。因此, 在抗体药物开发策略中应将IgG亚型的选择列入考虑范围。由于IgG4亚型独特的生物学特点, 使得它已用于一些不需要效应功能的治疗性抗体的开发。本文主要对治疗性抗体药物开发中IgG4亚型抗体的研究及应用现状进行综述, 以期为抗体药物的开发提供新的思路。
关键词:    治疗性抗体      亚型      IgG4     
Research progress of IgG4 in isotype selection of antibody drugs
CHEN Chen, WANG Hui, WEI Jing-shuang
NCPC New Drug Research and Development Co. Ltd., State Key Laboratory of Antibody Research & Development, Shijiazhuang 050015, China
Abstract:
Many specific therapeutic antibody drugs have been developed for different indications. In drug development, it has been found that the antibody isotype framework can not only affect the physical and chemical properties of therapeutic antibodies, but also influence the activity and therapeutic effect. As a result, IgG isotype selection should be considered carefully in antibody drug development strategies. Because of the unique biological characteristics, IgG4 isotype has been used in some therapeutic antibodies for which effector functions are not desired. In order to provide new ideas for the development of antibody drugs, the research and application progress of IgG4 isotype in therapeutic antibody drug development has been reviewed.
Key words:    therapeutic antibody    isotype    IgG4   
收稿日期: 2015-03-01
基金项目: "重大新药创制"国家科技重大专项创新型人源单抗药物研制平台及重大品种开发资助项目 (2014ZX09201041).
通讯作者: 魏敬双
Email: weijsh@hotmail.com
相关功能
PDF(863KB) Free
打印本文
0
作者相关文章
陈忱  在本刊中的所有文章
王辉  在本刊中的所有文章
魏敬双  在本刊中的所有文章

参考文献:
[1] Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market [J]. MAbs, 2015, 7: 9-14.
[2] Ruuls SR, Lammerts van Bueren JJ, van de Winkel JG, et al. Novel human antibody therapeutics: the age of the Umabs [J]. Biotechnol J, 2008, 3: 1157-1171.
[3] Ito T, Tsumoto K. Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress [J]. Protein Sci, 2013, 2: 1542-1551.
[4] Salfeld JG. Isotype selection in antibody engineering [J]. Nat Biotechnol, 2007, 25: 1369-1372.
[5] Correia IR. Stability of IgG isotypes in serum [J]. MAbs, 2010, 2: 221-232.
[6] Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions [J]. Front Immunol, 2014, 5: 520. doi: 10.3389/fimmu.2014.00520.
[7] Reichert JM. Marketed therapeutic antibodies compendium [J]. MAbs, 2012, 4: 413-415.
[8] Pepinsky RB, Silvian L, Berkowitz SA, et al. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis [J]. Protein Sci, 2010, 19: 954-966.
[9] Ejima D, Tsumoto K, Fukuda H, et al. Effects of acid exposure on the conformation, stability, and aggregation of monoclonal antibodies [J]. Proteins, 2007, 66: 954-962.
[10] Hari SB, Lau H, Razinkov VI, et al. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition [J]. Biochemistry, 2010, 49: 9328-9338.
[11] Latypov RF, Hogan S, Lau H, et al. Elucidation of acid-induced unfolding and aggregation of human immunoglobulin IgG1 and IgG2 Fc [J]. J Biol Chem, 2012, 287: 1381-1396.
[12] Ishikawa T, Ito T, Endo R, et al. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies [J]. Biol Pharm Bull, 2010, 33: 1413-1417.
[13] Franey H, Brych SR, Kolvenbach CG, et al. Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational change and covalent character in isolated aggregates [J]. Protein Sci, 2010, 19: 1601-1615.
[14] Varshney AK, Wang X, Aguilar JL, et al. Isotype switching increases efficacy of antibody protection against staphylococcal enterotoxin B-induced lethal shock and Staphylococcus aureus sepsis in mice [J]. MBio, 2014, 5: e01007-14. doi: 10.1128/mBio.01007-14.
[15] Varshney AK, Wang X, Cook E, et al. Generation, charac­terization, and epitope mapping of neutralizing and protective monoclonal antibodies against staphylococcal enterotoxin B-induced lethal shock [J]. J Biol Chem, 2011, 286: 9737-9747.
[16] Varshney AK, Wang X, Scharff MD, et al. Staphylococcal enterotoxin B-specific monoclonal antibody 20B1 successfully treats diverse Staphylococcus aureus infections [J]. J Infect Dis, 2013, 208: 2058-2066.
[17] Suitters AJ, Foulkes R, Opal SM, et al. Differential effect of isotype on efficacy of anti-tumor necrosis factor α chimeric antibodies in experimental septic shock [J]. J Exp Med, 1994, 179: 849-856.
[18] Reddy MP, Kinney CA, Chaikin MA, et al. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4 [J]. J Immunol, 2000, 164: 1925-1933.
[19] Beenhouwer DO, Yoo EM, Lai CW, et al. Human immunoglobulin G2 (IgG2) and IgG4, but not IgG1 or IgG3, protect mice against Cryptococcus neoformans infection [J]. Infect Immun, 2007, 75: 1424-1435.
[20] Jefferis R. Isotype and glycoform selection for antibody therapeutics [J]. Arch Biochem Biophys, 2012, 526: 159-166.
[21] Lee JH, Yeo J, Park HS, et al. Biochemical characterization of a new recombinant TNF receptor-hyFc fusion protein expressed in CHO cells [J]. Protein Expr Purif, 2013, 87: 17-26.
[22] Rispens T, Leeuwen Av, Vennegoor A, et al. Measurement of serum levels of natalizumab, an immunoglobulin G4 therapeutic monoclonal antibody [J]. Anal Biochem, 2011, 411: 271-276.
[23] Davies AM, Rispens T, Ooijevaar-de Heer P, et al. Structural determinants of unique properties of human IgG4-Fc [J]. J Mol Biol, 2014, 426: 630-644.
[24] Liu H, May K. Disulfide bond structures of IgG molecules [J]. MAbs, 2012, 4: 17-23.
[25] Ahmad M, Mahajan VS, Mattoo H, et al. Individuals with IgG4-related disease do not have an increased frequency of the K409 variant of IgG4 that compromises Fab-arm exchange [J]. J Rheumatol, 2014, 41: 185-187.
[26] van der Neut Kolfschoten M, Schuurman J, Losen M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange [J]. Science, 2007, 317: 1554-1557.
[27] Rose RJ, Labrijn AF, van den Bremer ET, et al. Quantitative analysis of the interaction strength and dynamics of human IgG4 half molecules by native mass spectrometry [J]. Structure, 2011, 19: 1274-1282.
[28] Labrijn AF, Rispens T, Meesters J, et al. Species-specific determinants in the IgG CH3 domain enable Fab-arm exchange by affecting the noncovalent CH3-CH3 interaction strength [J]. J Immunol, 2011, 187: 3238-3246.
[29] Labrijn AF, Buijsse AO, van den Bremer ET, et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo [J]. Nat Biotechnol, 2009, 27: 767-771.
[30] Silva JP, Vetterlein O, Jose J, et al. The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation [J]. J Biol Chem, 2015, 290: 5462-5469.
[31] Beck A, Wurch T, Bailly C, et al. Strategies and challenges for the next generation of therapeutic antibodies [J]. Nat Rev Immunol, 2010, 10: 345-352.
[32] Broug E, Bland-Ward PA, Powell J, et al. Fab-arm exchange [J]. Nat Biotechnol, 2010, 28: 123-125.
[33] Lewis KB, Meengs B, Bondensgaard K, et al. Comparison of the ability of wild type and stabilized human IgG4 to undergo Fab arm exchange with endogenous IgG4 in vitro and in vivo [J]. Mol Immunol, 2009, 46: 3488-3494.
[34] Rispens T, Davies AM, Ooijevaar-de Heer P, et al. Dynamics of inter-heavy chain interactions in human immunoglobulin G (IgG) subclasses studied by kinetic Fab arm exchange [J]. J Biol Chem, 2014, 289: 6098-6109.
[35] Rispens T, Ooijevaar-de Heer P, Bende O, et al. Mechanism of immunoglobulin G4 Fab-arm exchange [J]. J Am Chem Soc, 2011, 133: 10302-10311.
[36] Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy [J]. Oncoimmunology, 2012, 1: 1223-1225.
[37] Maverakis E, Cornelius LA, Bowen GM, et al. Metastatic melanoma – a review of current and future treatment options [J]. Acta Derm Venereol, 2015, 95: 516-524.
[38] Korde N, Carlsten M, Lee MJ, et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma [J]. Haematologica, 2014, 99: e81-83.
[39] Debaene F, Wagner-Rousset E, Colas O, et al. Time resolved native ion-mobility mass spectrometry to monitor dynamics of IgG4 Fab arm exchange and "bispecific" monoclonal antibody formation [J]. Anal Chem, 2013, 85: 9785-9792.
[40] Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation [J]. Nat Rev Immunol, 2010, 10: 301-316.
[41] Elvin JG, Couston RG, van der Walle CF. Therapeutic antibodies: market considerations, disease targets and bioprocessing [J]. Int J Pharm, 2013, 440: 83-98.
[42] Vincent KJ, Zurini M. Current strategies in antibody engineering Fc engineering and pH-dependent antigen binding, bispecific antibodies and antibody drug conjugates [J]. Biotechnol J, 2012, 7: 1444-1450.