药学学报, 2015, 50(7): 899-905
引用本文:
李晶晶, 郭曼曼, 韩顺平, 孙悦, 费伟东, 徐秀玲, 李范珠. 共修饰冰片和叶酸的阿霉素聚酰胺-胺纳米给药系统的制备及体外评价[J]. 药学学报, 2015, 50(7): 899-905.
LI Jing-jing, GUO Man-man, HAN Shun-ping, SUN Yue, FEI Wei-dong, XU Xiu-ling, LI Fan-zhu. Preparation and in vitro evaluation of borneol and folic acid co-modified doxorubicin loaded PAMAM drug delivery system[J]. Acta Pharmaceutica Sinica, 2015, 50(7): 899-905.

共修饰冰片和叶酸的阿霉素聚酰胺-胺纳米给药系统的制备及体外评价
李晶晶, 郭曼曼, 韩顺平, 孙悦, 费伟东, 徐秀玲, 李范珠
浙江中医药大学药学院, 浙江 杭州 310053
摘要:
本文基于聚酰胺-胺 [poly (amido amine), PAMAM G5] 树状大分子, 通过化学合成叶酸 (folic acid, FA) 介导的、冰片 (borneol, BO) 修饰的新型纳米载体 (FA-BO-PAMAM), 并包载抗癌药物阿霉素 (doxorubicin, DOX), 以达到增加药物血脑屏障 (blood-brain barrier, BBB) 的透过性和提高脑胶质瘤靶向性的目的。通过1H NMR验证合成载体的结构, 采用透射电镜 (TEM) 和纳米粒度-电位分析仪 (DLS) 分别对FA-BO-PAMAM的形貌、粒径和表面电势进行表征; 另外基于脑血管内皮细胞 (HBMEC) 和脑胶质瘤细胞 (C6) 双细胞模型考察载体的细胞毒性, 以及载药复合物体外跨BBB膜转运的能力、细胞摄取效率和体外抗肿瘤的效果。1H NMR的结果表明FA-BO-PAMAM合成成功, 在TEM下呈类圆形, 大小分布均匀, 粒径为 (22.28 ± 0.42) nm, zeta电位为 (7.6 ± 0.89) mV(n = 3)。细胞毒性和体外跨BBB转运实验结果显示, PAMAM功能化修饰冰片显著地降低了PAMAM毒性, 提高了生物安全性, 同时增加了载药复合物跨BBB转运率。细胞摄取和体外抗肿瘤实验结果表明, 叶酸的修饰增加了C6细胞对载药复合物的总摄取量, 且提高了体外对C6细胞的抑制率。因此, 该新型靶向纳米载体增加了药物在肿瘤部位的蓄积量, 显示了其在治疗脑胶质瘤应用中的潜能。
关键词:    聚酰胺-胺      冰片      叶酸      阿霉素      脑胶质瘤      血脑屏障      体外评价     
Preparation and in vitro evaluation of borneol and folic acid co-modified doxorubicin loaded PAMAM drug delivery system
LI Jing-jing, GUO Man-man, HAN Shun-ping, SUN Yue, FEI Wei-dong, XU Xiu-ling, LI Fan-zhu
College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
Abstract:
A novel targeting drug carrier (FA-BO-PAMAM) based on the PAMAM G5 dendrimer modified with borneol (BO) and folic acid (FA) molecules on the periphery and doxorubicin (DOX) loaded in the interior was designed and prepared to achieve the purposes of enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. 1H NMR was used to confirm the synthesis of FA-BO-PAMAM; its morphology and mean size were analyzed by dynamic light scattering (DLS) and transmission electron microscope (TEM). Based on the HBMEC and C6 cells, cytotoxicity assay, transport across the BBB, cellular uptake and anti-tumor activity in vitro were investigated to evaluate the properties of nanocarriers in vitro. The results showed that the nanocarrier of FA-BO-PAMAM was successfully synthesized, which was spherical in morphology with the average size of (22.28 ± 0.42) nm, and zeta potential of (7.6 ± 0.89) mV. Cytotoxicity and transport across the BBB assay showed that BO-modified conjugates decreased the cytotoxicity of PAMAM against both HBMEC and C6 cells and exhibited higher BBB transportation ability than BO-unmodified conjugates; moreover, modification with FA increased the total uptake of DOX by C6 cells and enhanced the cytotoxicity of DOX-polymer against C6 cells. Therefore, FA-BO-PAMAM is a promising nanodrug delivery system in employing PAMAM as a drug carrier and treatment for brain glioma.
Key words:    poly (amido amine)    borneol    folic acid    doxorubicin    brain glioma    blood-brain barrier    in vitro evaluation   
收稿日期: 2015-04-07
基金项目: 国家自然科学基金资助项目 (81274089, 81473361); 浙江省自然科学基金资助项目 (LZ13H280001, LY12H280004); 浙江省科技创新团队资助项目 (2010R500445).
通讯作者: 徐秀玲, 李范珠
Email: xuxiuling@zcmu.edu.cn;lifanzhu@zcmu.edu.cn
相关功能
PDF(4332KB) Free
打印本文
0
作者相关文章
李晶晶  在本刊中的所有文章
郭曼曼  在本刊中的所有文章
韩顺平  在本刊中的所有文章
孙悦  在本刊中的所有文章
费伟东  在本刊中的所有文章
徐秀玲  在本刊中的所有文章
李范珠  在本刊中的所有文章

参考文献:
[1] Ricard D, Idbaih A, Ducray E, et al. Primary brain tumours in adults [J]. Lancet, 2003, 379: 1984-1996.
[2] Colman H, Aldape K. Molecular predictors in glioblastoma: toward personalized therapy [J]. Arch Neurol, 2008, 65: 877-883.
[3] Yuan DF, Zong TL, Gao HL, et al. Cell penetrating peptide TAT and brain tumor targeting peptide T7 dual modified liposome preparation and in vitro targeting evaluation [J]. Acta Pharm Sin (药学学报), 2015, 50: 104-110.
[4] van Vlerken LE, Vyas TK, Amiji MM. Poly (ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery [J]. Pharm Res, 2007, 24: 1405-1414.
[5] Zhu S, Qian L, Hong M, et al. RGD-modified PEG-PAMAM-DOX conjugate: in vitro and in vivo targeting to both tumor neovascular endothelial cells and tumor cells [J]. Adv Mater, 2011, 23: H84-H89.
[6] Wang C, Bo SR, Tun GM, et al. PEGylation of polyamidoamine dendrimer and the properties for gene vectors [J].Acta Pharm Sin (药学学报), 2011, 46: 102-108.
[7] Zhang L, Han LM, Qin J, et al. The use of borneol as an enhancer for targeting aprotinin-conjugated PEG-PLGA nanoparticles to the brain [J]. Pharm Res, 2013, 30: 2560-2572.
[8] Ren JG, Zou MJ, Gao P, et al. Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nanoparticles in mice after intravenous administration [J]. Eur J Pharm Biopharm, 2013, 83: 141-148.
[9] Diao J, Cao QL, Zheng XL, et al. Folate receptor-mediated antitumor drugs [J]. Acta Pharm Sin (药学学报), 2009, 44: 109-114.
[10] Zhao MX, Li Y, Wang CJ. Synthesis and bioactivity of the folate receptor targeted γ-cyclodextrin-folate inclusion-coated CdSe/ZnS quantum dots [J]. Acta Pharm Sin (药学 学报), 2013, 48: 566-572.
[11] Yue Y, Eun JS, Lee MK, et al. Synthesis and characterization of G5 PAMAM dendrimer containing daunorubicin for targeting cancer cells [J]. Arch Pharm Res, 2012, 35: 343-349.
[12] Kratzer I, Wernig K, Panzenboeck U, et al. Apolipoprotein A-I coating of protamine-oligonucleotide nanoparticles increases particle uptake and transcytosis in an in vitro model of the blood-brain barrier [J]. J Control Release, 2007, 117: 301-311.
[13] He H, Li Y, Jia XR, et al. PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors [J]. Biomaterials, 2011, 32: 478.
[14] Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer [J]. Nat Rev Drug Discov, 2008, 7: 771-782.
[15] Qiu LY, Wang RJ, Zheng C, et al. β-cyclodextrin-centered star-shaped amphiphilic polymers for doxorubicin delivery [J]. Nanomedicine, 2010, 5: 193-208.
[16] Liu JF, Liu JJ, Chu LP, et al. Synthesis, biodistribution, and imaging of pegylated-acetylated polyamidoamine dendrimers [J]. J Nanosci Nanotechnol, 2014, 14: 3305-3312.
[17] Jevprasesphant R, Penny J, Attwood D, et al. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity [J]. Pharm Res, 2003, 20: 1543-1550.
[18] Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics [J]. Adv Drug Deliv Rev, 2008, 60: 1615-1626.
相关文献:
1.陈丽娟, 鲁翠涛, 赵应征, 杜丽娜, 金义光.超声微泡用于脑胶质瘤靶向药物递送[J]. 药学学报, 2015,50(1): 99-103
2.顾卓珺, 王萌, 方琼艳, 王成润, 郑怀宇.载阿霉素普朗尼克化聚酰胺-胺树状聚合物对乳腺癌多药耐药细胞株MCF-7/ADR的抑制作用[J]. 药学学报, 2014,49(8): 1188-1193
3.闫颖;齐宪荣.以叶酸受体为靶向的阳离子脂质体的制备与性质考察[J]. 药学学报, 2008,43(11): 1134-1139
4.张奇;项光亚;龙娜;林佳亮;曾凡波.叶酸靶向的PGA联合N-苯乙酰化阿霉素的抗肿瘤活性[J]. 药学学报, 2005,40(11): 1046-1050