药学学报, 2015, 50(9): 1088-1095
引用本文:
李俊, 王巍. HIV衣壳蛋白结构及其药物小分子研究进展[J]. 药学学报, 2015, 50(9): 1088-1095.
LI Jun, WANG Wei. Progress in the study of HIV capsid structure and drug discovery[J]. Acta Pharmaceutica Sinica, 2015, 50(9): 1088-1095.

HIV衣壳蛋白结构及其药物小分子研究进展
李俊, 王巍
武汉大学药学院, 组合生物合成与新药发现教育部重点实验室(武汉大学), 湖北 武汉 430071
摘要:
HIV衣壳蛋白聚集形成富勒烯锥形体,将病毒RNA包裹其中,这个过程对于HIV病毒的感染性起着至关重要的作用,衣壳蛋白被认为是潜在的药物靶点。近年来大量的研究阐明了衣壳蛋白的空间结构,并且发现了以衣壳蛋白为靶点的多肽或者小分子药物。本文主要总结衣壳蛋白的空间结构特点,对于作用于衣壳蛋白的小分子和多肽的结合位点进行详尽分析与比较,同时也对以成熟过程中蛋白相互作用为靶点的药物发现进行了展望。
关键词:    HIV衣壳蛋白      三维空间结构      基于结构的药物发现      抗艾滋病毒抑制剂     
Progress in the study of HIV capsid structure and drug discovery
LI Jun, WANG Wei
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery(Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
Abstract:
The HIV-1 capsid protein plays a crucial role in viral infectivity, assembling into a fullerene cone that encloses the viral RNA and it has gained attention as a promising therapeutic target. Research has been focused on the spatial structures of capsid proteins in recent years, and peptides and small molecules targeting capsid have been discovered. In this article, it summarizes the structure information of capsid protein, analyzes and compares the binding information of different peptides and small molecules targeting capsid. At the same time we give the perspective to the future drug discovery based on the protein-protein interaction during the maturation process.
Key words:    HIV capsid    three-dimensional structure    structure based drug discovery    anti-HIV inhibitor   
收稿日期: 2015-03-05
基金项目: 国家自然科学基金资助项目(21202125,3130060);湖北省自然科学基金资助项目(2014CFB241);教育部留学回国人员科研启动基金;中央高校基本科研业务费专项资金.
通讯作者: 王巍,Tel:86-27-68759586,Fax:86-27-68759850,E-mail:waw6@whu.edu.cn
Email: waw6@whu.edu.cn
相关功能
PDF(6205KB) Free
打印本文
0
作者相关文章
李俊  在本刊中的所有文章
王巍  在本刊中的所有文章

参考文献:
[1] Katlama C, Deeks SG, Autran B, et al. Barriers to a cure for HIV:new ways to target and eradicate HIV-1 reservoirs[J]. Lancet, 2013, 381:2109-2117.
[2] Matthews T, Salgo M, Greenberg M, et al. Enfuvirtide:the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes[J]. Nat Rev Drug Discov, 2004, 3:215-225.
[3] De Clercq E. New approaches toward anti-HIV chemotherapy[J]. J Med Chem, 2005, 48:1297-1313.
[4] Mehellou Y, De Clercq E. Twenty-six years of anti-HIV drug discovery:where do we stand and where do we go?[J]. J Med Chem, 2009, 53:521-538.
[5] Lu XF, Chen ZW. The development of anti-HIV-1 drugs[J]. Acta Pharm Sin (药学学报), 2010, 45:165-176.
[6] Zhang Y. The newest developments in anti-HIV-1 drugs[J]. Acta Pharm Sin (药学学报), 2010, 45:194-204.
[7] Shi WG, Jia QY, Liu KL. The current progress in the development of HIV-1 fusion inhibitors[J]. Acta Pharm Sin (药学学报), 2010, 45:184-193.
[8] Lai WH, Huang L, Chen CH. HIV entry inhibitors:progress in development and application[J]. Acta Pharm Sin (药学学报), 2010, 45:165-176.
[9] Wesley I. Sundquist H-GK. HIV-1 assembly, budding, and maturation[J]. Cold Spring Harb Perspect Med, 2012, 2:a006924.
[10] Zandi R, van der Schoot P, Reguera D, et al. Classical nucleation theory of virus capsids[J]. Biophys J, 2006, 90:1939-1948.
[11] Ehrlich LS, Liu T, Scarlata S, et al. HIV-1 capsid protein forms spherical (immature-like) and tubular (mature-like) particles in vitro:structure switching by pH-induced conformational changes[J]. Biophys J, 2001, 81:586-594.
[12] Blair WS, Pickford C, Irving SL, et al. HIV capsid is a tractable target for small molecule therapeutic intervention[J]. PLoS Pathog, 2010, 6:e1001220.
[13] Briggs JAG, Simon MN, Gross I, et al. The stoichiometry of Gag protein in HIV-1[J]. Nat Struct Mol Biol, 2004, 11:672-675.
[14] Ganser BK, Li S, Klishko VY, et al. Assembly and analysis of conical models for the HIV-1 core[J]. Science, 1999, 283:80-83.
[15] Briggs JAG, Wilk T, Welker R, et al. Structural organization of authentic, mature HIV-1 virions and cores[J]. EMBO J, 2003, 22:1707-1715.
[16] Nguyen A, Feasley C, Jackson K, et al. The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles[J]. Retrovirology, 2011, 8:101.
[17] Martin DE, Salzwedel K, Allaway GP. Bevirimat:a novel maturation inhibitor for the treatment of HIV-1 infection[J]. Antivir Chem Chemother, 2008, 19:107-113.
[18] Smith PF, Ogundele A, Forrest A, et al. Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3',3'-dimethylsuccinyl) betulinic acid (bevirimat) against human immunodeficiency virus infection[J]. Antimicrob Agents Chemother, 2007, 51:3574-3581.
[19] Jiang Y, Liu X. The role of structural protein Gag and related gene (protein) in late stages of the HIV-1 replication cycle and the inhibitors[J]. Acta Pharm Sin (药学学报), 2010, 45:205-214.
[20] Perni RB, Conway SC, Ladner SK, et al. Phenylpropenamide derivatives as inhibitors of hepatitis B virus replication[J]. Bioorg Med Chem Lett, 2000, 10:2687-2690.
[21] Katen SP, Chirapu SR, Finn MG, et al. Trapping of hepatitis B virus capsid assembly intermediates by phenylpropenamide assembly accelerators[J]. ACS Chem Biol, 2010, 5:1125-1136.
[22] Bharat TAM, Castillo Menendez LR, Hagen WJH, et al. Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly[J]. Proc Natl Acad Sci USA, 2014, 111:8233-8238.
[23] Byeon IJ, Meng X, Jung J, et al. Structural convergence between cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function[J]. Cell, 2009, 139:780-790.
[24] Ganser-Pornillos BK, Cheng A, Yeager M. Structure of fulllength HIV-1 CA:a model for the mature capsid lattice[J]. Cell, 2007, 131:70-79.
[25] Pornillos O, Ganser-Pornillos BK, Kelly BN, et al. X-Ray structures of the hexameric building block of the HIV capsid[J]. Cell, 2009, 137:1282-1292.
[26] Pornillos O, Ganser-Pornillos BK, Yeager M. Atomic-level modelling of the HIV capsid[J]. Nature, 2011, 469:424-427.
[27] Schur FKM, Hagen WJH, Rumlova M, et al. Structure of the immature HIV-1 capsid in intact virus particles at 8.8Å resolution[J]. Nature, 2015, 517:505-508.
[28] Zhao G, Perilla JR, Yufenyuy EL, et al. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics[J]. Nature, 2013, 497:643-646.
[29] Ivanov D, Tsodikov OV, Kasanov J, et al. Domain-swapped dimerization of the HIV-1 capsid C-terminal domain[J]. Proc Natl Acad Sci USA, 2007, 104:4353-4358.
[30] Alan Engelman PC. The structure biology of HIV-1:mechanistic and therapeutic insights[J]. Nat Rev Microbiol, 2012, 10:279-290.
[31] Gross I, Hohenberg H, Wilk T, et al. A conformational switch controlling HIV-1 morphogenesis[J]. EMBO J, 2000, 19:103-113.
[32] Byeon IJ, Hou G, Han Y, et al. Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein:implications for structural polymorphism of CA assemblies[J]. J Am Chem Soc, 2012, 134:6455-6466.
[33] Lanman JSJ, Sakalian M, Prevelige PE Jr. Kinetic analysis of the role of intersubunit interactions in human immunodeficiency virus type 1 capsid protein assembly in vitro[J]. J Virol, 2002, 76:6900-6908.
[34] Deshmukh L, Schwieters CD, Grishaev A, et al. Structure and dynamics of full-length HIV-1 capsid protein in solution[J]. J Am Chem Soc, 2013, 135:16133-16147.
[35] Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly[J]. Curr Opin Struct Biol, 2008, 18:203-217.
[36] Jouvenet N, Simon SM, Bieniasz PD. Visualizing HIV-1 Assembly[J]. J Mol Biol, 2011, 410:501-511.
[37] Liu D, Zhan P, Liu X. Recent progress in the development of HIV-1 capsid protein inhibitors[J]. Chin J Med Chem (中国药物化学杂志), 2011, 21:397-404.
[38] Abdurahman S, Vegvari A, Levi M, et al. Isolation and characterization of a small antiretroviral molecule affecting HIV-1 capsid morphology[J]. Retrovirology, 2009, 6:34.
[39] Jejcic A, Hoglund S, Vahlne A. GPG-NH2 acts via the metabolite alpha HGA to target HIV-1 Env to the ER-associated protein degradation pathway[J]. Retrovirology, 2010, 7:20.
[40] Höglund S, Su J, Reneby SS, et al. Tripeptide interference with human immunodeficiency virus type 1 morphogenesis[J]. Antimicrob Agents Chemother, 2002, 46:3597-3605.
[41] Tang C, Loeliger E, Kinde I, et al. Antiviral inhibition of the HIV-1 capsid protein[J]. J Mol Biol, 2003, 327:1013-1020.
[42] Kelly BN, Kyere S, Kinde I, et al. Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein[J]. J Mol Biol, 2007, 373:355-366.
[43] Du S, Betts L, Yang R, et al. Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding[J]. J Mol Biol, 2011, 406:371-386.
[44] Chen K, Tan Z, He M, et al. Structure-activity relationships (SAR) research of thiourea derivatives as dual inhibitors targeting both HIV-1 capsid and human cyclophilin A[J]. Chem Biol Drug Des, 2010, 76:25-33.
[45] Li J, Tan Z, Tang S, et al. Discovery of dual inhibitors targeting both HIV-1 capsid and human cyclophilin A to inhibit the assembly and uncoating of the viral capsid[J]. Bioorg Med Chem, 2009, 17:3177-3188.
[46] Tian B, He M, Tan Z, et al. Synthesis and antiviral evaluation of new N-acylhydrazones containing glycine residue[J]. Chem Biol Drug Des, 2011, 77:189-198.
[47] Bhattacharya A, Alam SL, Fricke T, et al. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6[J]. Proc Natl Acad Sci USA, 2014, 111:18625-18630.
[48] Price AJ, Jacques DA, McEwan WA, et al. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly[J]. PLoS Pathog, 2014, 10:e1004459.
[49] Shi J, Zhou J, Halambage UD, et al. Compensatory substitutions in the HIV-1 capsid reduce the fitness cost associated with resistance to a capsid-targeting small-molecule inhibitor[J]. J Virol, 2015, 89:208-219.
[50] Fader LD, Bethell R, Bonneau P, et al. Discovery of a 1,5-dihydrobenzo[b][1,4] diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly[J]. Bioorg Med Chem Lett, 2011, 21:398-404.
[51] Yoakim C, Deroy P, Duplessis M, et al. Inhibitors of HIV Replication:WO, 2008067644[P]. 2008-6-12.
[52] Fader LD, Landry S, Goulet S, et al. Optimization of a 1,5-dihydrobenzo[b][1,4] diazepine-2,4-dione series of HIV capsid assembly inhibitors 2:structure-activity relationships (SAR) of the C3-phenyl moiety[J]. Bioorg Med Chem Lett, 2013, 23:3401-3405.
[53] Fader LD, Landry S, Morin S, et al. Optimization of a 1,5-dihydrobenzo[b][1,4] diazepine-2,4-dione series of HIV capsid assembly inhibitors 1:addressing configurational instability through scaffold modification[J]. Bioorg Med Chem Lett, 2013, 23:3396-3400.
[54] Titolo S, Mercier JF, Wardrop E, et al. Discovery of Potent HIV-1 Capsid Assembly Inhibitors[C]. San Francisco:17th Conference on Retroviruses and Opportunistic Infections, 2010.
[55] Lamorte L, Titolo S, Lemke CT, et al. Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes[J]. Antimicrob Agents Chemother, 2013, 57:4622-4631.
[56] Sticht J, Humbert M, Findlow S, et al. A peptide inhibitor of HIV-1 assembly in vitro[J]. Nat Struct Mol Biol, 2005, 12:671-677.
[57] Ternois F, Sticht J, Duquerroy S, et al. The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor[J]. Nat Struct Mol Biol, 2005, 12:678-682.
[58] Zhang H, Zhao Q, Bhattacharya S, et al. A cell-penetrating helical peptide as a potential HIV-1 inhibitor[J]. J Mol Biol, 2008, 378:565-580.
[59] Curreli F, Zhang H, Zhang X, et al. Virtual screening based identification of novel small-molecule inhibitors targeted to the HIV-1 capsid[J]. Bioorg Med Chem, 2011, 19:77-90.
[60] Kortagere S, Madani N, Mankowski MK, et al. Inhibiting early-stage events in HIV-1 replication by small-molecule targeting of the HIV-1 capsid[J]. J Virol, 2012, 86:8472-8481.
[61] Kortagere S, Xu JP, Mankowski MK, et al. Structure-activity relationships of a novel capsid targeted inhibitor of HIV-1 replication[J]. J Chem Inf Model, 2014, 54:3080-3090.
[62] Goudreau N, Lemke CT, Faucher AM, et al. Novel inhibitor binding site discovery on HIV-1 capsid N-terminal domain by NMR and X-ray crystallography[J]. ACS Chem Biol, 2013, 8:1074-1082.
[63] Bocanegra R, Nevot M, Doménech R, et al. Rationally designed interfacial peptides are efficient in vitro inhibitors of HIV-1 capsid assembly with antiviral activity[J]. PLoS One, 2011, 6:e23877.
[64] Zlotnick A, Mukhopadhyay S. Virus assembly, allostery and antivirals[J]. Trends Microbiol, 2011, 19:14-23.