药学学报, 2016, 51(1): 33-38
引用本文:
朱琪, 林芳. 自噬的分子标志物[J]. 药学学报, 2016, 51(1): 33-38.
ZHU Qi, LIN Fang. Molecular markers of autophagy[J]. Acta Pharmaceutica Sinica, 2016, 51(1): 33-38.

自噬的分子标志物
朱琪, 林芳
苏州大学药学院, 江苏 苏州 215123
摘要:
自噬 (autophagy) 是真核细胞所特有的通过溶酶体降解细胞内物质成分的过程。自噬主要包括大自噬 (macroautophagy)、小自噬 (microautophagy) 和分子伴侣介导的自噬 (chaperon-mediated autophagy, CMA), 此外还包括线粒体自噬 (mitophagy)、聚集体自噬 (aggrephagy) 等选择性自噬。根据最新的研究进展, 本文总结了大自噬、分子伴侣介导的自噬以及线粒体自噬中的一些重要的分子标志物。
关键词:    自噬      大自噬      分子伴侣介导的自噬      线粒体自噬      分子标志物     
Molecular markers of autophagy
ZHU Qi, LIN Fang
Soochow University School of Pharmaceutical Science, Suzhou 215123, China
Abstract:
Autophagy is a physiological process which delivers the mutant cytoplasmic proteins and dysfunctional subcellular organs into lysosomes for degradation to generate fuel in the deficiency conditions. It is mainly classified into macroautophagy, microautophagy and chaperon-mediated autophagy (CMA), as well as the selective autophagy such as mitophagy and aggrephagy. This review mainly introduces the key molecular markers of macroautophagy, CMA and mitophagy.
Key words:    autophagy    macroautophagy    chaperon-mediated autophagy    mitophagy    molecular marker   
收稿日期: 2015-07-20
DOI: 10.16438/j.0513-4870.2015-0634
基金项目: 国家自然科学基金资助项目 (81571252).
通讯作者: 林芳
Email: bluestonelin@hotmail.com
相关功能
PDF(6753KB) Free
打印本文
0
作者相关文章
朱琪  在本刊中的所有文章
林芳  在本刊中的所有文章

参考文献:
[1] Murrow L, Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease [J]. Annu Rev Pathol, 2013, 8: 105-137.
[2] Hale AN, Ledbetter DJ, Gawriluk TR, et al. Autophagy: regulation and role in development [J]. Autophagy, 2013, 9: 951-972.
[3] Wang CW, Klionsky DJ. The molecular mechanism of autophagy [J]. Mol Med, 2003, 9: 65-76.
[4] Mizushima N, Noda T, Yoshimori T, et al. A protein conjuga­tion system essential for autophagy [J]. Nature, 1998, 395: 395-398.
[5] Otomo C, Metlagel Z, Takaesu G, et al. Structure of the human Atg12-Atg5 conjugate required for LC3 lipidation in autophagy [J]. Nat Struct Mol Biol, 2013, 20: 59-66.
[6] Kuma A, Mizushima N, Ishihara N, et al. Formation of the approximately 350-kD Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast [J]. J Biol Chem, 2002, 277: 18619- 18625.
[7] Dancourt J, Melia TJ. Lipidation of the autophagy proteins LC3 and GABARAP is a membrane-curvature dependent process [J]. Autophagy, 2014, 10: 1470-1471.
[8] Reggiori F, Shintani T, Nair U, et al. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts [J]. Autophagy, 2005, 1: 101-109.
[9] Orsi A, Razi M, Dooley HC, et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy [J]. Mol Biol Cell, 2012, 23: 1860-1873.
[10] Backer JM. The regulation and function of class III PI3Ks: novel roles for Vps34 [J]. Biochem J, 2008, 410: 1-17.
[11] Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy [J]. Autophagy, 2008, 4: 600-606.
[12] Liang XH, Yu J, Brown K, et al. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function [J]. Cancer Res, 2001, 61: 3443-3449.
[13] Fan W, Nassiri A, Zhong Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L) [J]. Proc Natl Acad Sci U S A, 2011, 108: 7769-7774.
[14] Diao J, Liu R, Rong Y, et al. Atg14 promotes membrane tethering and fusion of autophagosomes to endolysosomes [J]. Nature, 2015, 520: 563-566.
[15] Crighton D, Wilkinson S, O'Prey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis [J]. Cell, 2006, 126: 121-134.
[16] Nanao T, Koike M, Yamaguchi J, et al. Cellular localization and tissue distribution of endogenous DFCP1 protein [J]. Biomed Res, 2015, 36: 121-133.
[17] Callahan JW, Bagshaw RD, Mahuran DJ. The integral membrane of lysosomes: its proteins and their roles in disease [J]. J Proteomics, 2009, 72: 23-33.
[18] Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy [J]. J Biol Chem, 2007, 282: 24131-24145.
[19] Bitto A, Lerner CA, Nacarelli T, et al. P62/SQSTM1 at the interface of aging, autophagy, and disease [J]. Age, 2014, 36: 9626.
[20] Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world [J]. Trends Cell Biol, 2012, 22: 407-417.
[21] Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging [J]. Cell Res, 2014, 24: 92-104.
[22] Arias E, Cuervo AM. Chaperone-mediated autophagy in protein quality control [J]. Curr Opin Cell Biol, 2011, 23: 184-189.
[23] Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy [J]. Arch Biochem Biophys, 2007, 462: 245-253.
[24] Han JY, Kang MJ, Kim KH, et al. Nitric oxide induction of Parkin translocation in PTEN-induced putative kinase 1 (PINK1) deficiency: functional role of neuronal nitric oxide synthase during mitophagy [J]. J Biol Chem, 2015, 290: 10325-10335.
[25] Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance [J]. EMBO Rep, 2010, 11: 45-51.
[26] Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria- anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy [J]. Dev Cell, 2009, 17: 87-97.
[27] Liu L, Sakakibara K, Chen Q, et al. Receptor-mediated mitophagy in yeast and mammalian systems [J]. Cell Res, 2014, 24: 787-795.
[28] Ding WX, Ni HM, Li M, et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming [J]. J Biol Chem, 2010, 285: 27879- 27890.
相关文献:
1.欧阳亮, 张岚, 刘博.帕金森病中的自噬途径与关键药物靶点[J]. 药学学报, 2016,51(1): 9-17
2.归冠, 孟珊珊, 李鲁娟, 刘彬, 梁红霞, 皇甫超申.亚硝酸钠通过线粒体自噬增强人肝癌SMMC-7721细胞迁移和侵袭能力[J]. 药学学报, 2016,51(1): 59-67