药学学报, 2016, 51(4): 662-667
引用本文:
廖永翠, 徐艳红, 张争, 魏建和. 白木香AsMYC2蛋白的原核表达与纯化[J]. 药学学报, 2016, 51(4): 662-667.
LIAO Yong-cui, XU Yan-hong, ZHANG Zheng, WEI Jian-he. Prokaryotic expression and purification of Aquilaria sinensis (Lour.) Gilg AsMYC2 protein[J]. Acta Pharmaceutica Sinica, 2016, 51(4): 662-667.

白木香AsMYC2蛋白的原核表达与纯化
廖永翠1,2, 徐艳红1, 张争1, 魏建和1
1. 中国医学科学院、北京协和医学院药用植物研究所, 北京 100193;
2. 江西中医药大学基础医学院转化医学中心, 江西南昌 330004
摘要:
MYC2转录因子属于bHLH转录因子家族中重要的一员,它是植物茉莉酸(JA)信号途径中的核心调控元件之一,但在白木香中研究甚少。本实验以白木香叶片中分离的总RNA为模板,通过RT-PCR方法获得AsMYC2基因的编码区(CDS)全长,利用基因重组技术构建pGEX-4T-1-AsMYC2原核表达载体,并进行酶切和测序鉴定,将鉴定正确的克隆转化大肠杆菌BL21(DE3),在37℃下0.1 mmol·L-1异丙基硫代β-D-半乳糖苷(IPTG)诱导4 h, AsMYC2蛋白的表达量最高,且主要为可溶性蛋白。利用谷胱甘肽亲和介质进行融合蛋白的纯化,最后应用SDS-PAGE电泳和Western blotting鉴定融合蛋白。结果表明,成功构建了pGEX-4T-1-AsMYC2原核表达载体,诱导了GST-AsMYC2(谷胱甘肽巯基转移酶-AsMYC2)融合蛋白的表达并进行了蛋白的纯化。高质量的GST-AsMYC2融合蛋白的获得,为多克隆抗体的制备提供材料基础,为筛选其互作蛋白因子和研究基因功能奠定基础。利用实时荧光定量PCR (qRT-PCR)技术对该基因进行组织表达特异性分析,结果显示AsMYC2基因在沉香形成的主要部位根和茎中的表达量最高,在叶中的表达量最低;该结果提示该基因可能与白木香中沉香的形成有关。
关键词:   
Prokaryotic expression and purification of Aquilaria sinensis (Lour.) Gilg AsMYC2 protein
LIAO Yong-cui1,2, XU Yan-hong1, ZHANG Zheng1, WEI Jian-he1
1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
2. Centre for Translation Medicine, School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
Abstract:
The MYC2 transcription factor is a member of the important plant bHLH transcription factor families, and it is also the core regulatory elements in jasmonate (JA) signaling pathway. However, there is a little information about AsMYC2 gene in Aquilaria sinensis. In this study, with the total RNA isolated from A. sinensis leave as template, the full-length coding sequence (CDS) of AsMYC2 gene was amplified using RT-PCR method and subcloned into pGEX-4T-1 vector by the gene recombination technique. The recombinant vector pGEX-4T-1-AsMYC2 was verified by restriction enzyme digestion and nucleotide sequencing, and was transformed into E. coli BL21(DE3) to express the protein. A maximum expression of soluble protein was observed with induction by 0.1 mmol·L-1 IPTG at 37℃ for 4 hours. The fusion protein was purified through a Sepharose-Glutathione column, and verified by SDS-PAGE and Western blotting using an anti-GST polyclonal antibody. We successfully constructed the GST-AsMYC2 plasmid, produced and purified the GST-AsMYC2 fusion protein, which would provide the basic material for polyclonal antibody preparation, interactive factors screening and gene function research. According to the tissue-specific expression pattern analysis by qRT-PCR method, the AsMYC2 gene in A. sinensis tissues is mainly expressed in roots and stems, the main agarwood formation parts, and lowest expressed in leaves. These results indicate that AsMYC2 gene likely play some roles in agarwood formation in A. sinensis.
Key words:   
收稿日期: 2015-10-08
DOI: 10.16438/j.0513-4870.2015-0872
基金项目: 国家自然科学基金资助项目(81173481,31100220,31000136);协和学者特聘教授(医科人发[2012]282号);科技部国家创新人才计划重点领域创新团队(2013);中组部"万人计划"(2014).
通讯作者: 魏建和
Email: wjianh@263.net
相关功能
PDF(1929KB) Free
打印本文
0
作者相关文章

参考文献:
[1] Persoon GA, Heuveling van Beek H. Growing ‘the wood of the Gods’:agarwood production in Southeast Asia//Snelder DJ, Lasco RD. Smallholder Tree Growing for Rural Development and Environmental Services:Lessons from Asia[M]. Dordrecht:Springer 2008:245-262.
[2] Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28:2731-2739.
[3] Zhang XL. Studies on Relationships Between Wound-induced Defense Response and Agarwood Formation in Aquilaria sinensis (伤害诱导的白木香防御反应与沉香形成的关系研究)[D]. Beijing:Beijing Forestry University, 2013.
[4] Chen HQ, Wei JH, Yang JS, et al. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants[J]. Chem Biodivers, 2012, 9:236-250.
[5] Chen HQ, Yang Y, Wei JH, et al. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) Gilg trees[J]. Molecules, 2011, 16:4884-4896.
[6] Kumeta Y, Ito M. Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood[J]. Plant Physiol, 2010, 154:1998-2007.
[7] Xu YH, Zhang Z, Wei JH, et al. Identification of genes related to agarwood formation:transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis[J]. BMC Genomics, 2013, 14:227.
[8] Zhang Z, Yang Y, Wei JH, et al. Response of endogenous jasmonates and sesquiterpenes to mechanical wound in Aquilaria sinensis stem[J]. Acta Hort Sin (园艺学报), 2013, 40:163-168.
[9] Wasternack C, Kombrink E. Jasmonates:structural requirements for lipid-derived signals active in plant stress responses and development[J]. ACS Chem Biol, 2010, 5:63-77.
[10] Galis I, Gaquerel E, Pandey SP, et al. Molecular mechanisms underlying plant memory in JA-mediated defence responses[J]. Plant Cell Environ, 2009, 32:617-627.
[11] Gfeller A, Liechti R, Farmer EE. Arabidopsis jasmonate signaling pathway[J]. Sci Signal, 2010, 3:4.
[12] Hong GJ, Xue XY, Mao YB, et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. Plant Cell, 2012, 24:2635-2648.
[13] Zhang HB, Bokowiec MT, Rushton PJ, et al. Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis[J]. Mol Plant, 2012, 5:73-84.
[14] Chini A, Boter M, Solano R. Plant oxylipins:COI1/JAZs/MYC2 as the core jasmonic acid-signalling[J]. FEBS J, 2009, 276:4682-4692.
[15] Staswick PE. JAZing up jasmonate signaling[J]. Trends Plant Sci, 2008, 13:66-71.
[16] Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signaling[J]. Nature, 2007, 448:661-662.
[17] Dombrecht B, Xue GP, Sprague SJ, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis[J]. Plant Cell, 2007, 19:2225-2245.