药学学报, 2016, 51(5): 717-724
引用本文:
马银云, 李莉, 黄海凤, 缑三虎, 倪京满. 肿瘤靶向型pH敏感多肽类药物递送系统研究进展[J]. 药学学报, 2016, 51(5): 717-724.
MA Yin-yun, LI Li, HUANG Hai-feng, GOU San-hu, NI Jing-man. Advances of tumor targeting peptides drug delivery system with pH-sensitive activities[J]. Acta Pharmaceutica Sinica, 2016, 51(5): 717-724.

肿瘤靶向型pH敏感多肽类药物递送系统研究进展
马银云, 李莉, 黄海凤, 缑三虎, 倪京满
兰州大学, 药学院, 药剂学研究所, 甘肃 兰州 730000
摘要:
pH 敏感性多肽类药物递送系统, 以肿瘤组织酸性的细胞外环境为靶点, 具有肿瘤特异性高、细胞毒性低, 且能显著提高传统抗癌药物的活性等优点, 近年来受到了广泛的关注。本文总结了5 种类型靶向作用于肿瘤细胞的pH 敏感性多肽类药物递送系统的研究进展, 对今后肿瘤靶向型药物的设计和应用有重要意义。
关键词:    pH敏感      多肽      肿瘤靶向      药物递送系统     
Advances of tumor targeting peptides drug delivery system with pH-sensitive activities
MA Yin-yun, LI Li, HUANG Hai-feng, GOU San-hu, NI Jing-man
Pharmaceutics Institute, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
Abstract:
The pH-sensitive peptides drug delivery systems, which target to acidic extracellular environment of tumor tissue, have many advantages in drug delivery. They exhibit a high specificity to tumor and low cytotoxicity, which significantly increase the efficacy of traditional anti-cancer drugs. In recent years the systems have received a great attention. The pH-sensitive peptides drug delivery systems can be divided into five types according to the difference in pH-responsive mechanism, type of peptides and carrier materials. This paper summarizes the recent progresses in the field with a focus on the five types of pH-sensitive peptides in drug delivery systems. This may provide a guideline to design and application of tumor targeting drugs.
Key words:    pH-sensitive    peptide    tumor targeting    drug delivery system   
收稿日期: 2015-09-22
DOI: 10.16438/j.0513-4870.2015-0838
基金项目: 国家自然科学基金资助项目(81273440).
通讯作者: 倪京满, Tel/Fax: 86-931-8915683, E-mail: nijm@lzu.edu.cn
Email: nijm@lzu.edu.cn
相关功能
PDF(846KB) Free
打印本文
0
作者相关文章
马银云  在本刊中的所有文章
李莉  在本刊中的所有文章
黄海凤  在本刊中的所有文章
缑三虎  在本刊中的所有文章
倪京满  在本刊中的所有文章

参考文献:
[1] Chari RVJ. Targeted cancer therapy:conferring specificity to cytotoxic drugs[J]. Acc Chem Res, 2008, 41:98-107.
[2] Böhme D, Beck-Sickinger AG. Drug delivery and release systems for targeted tumor therapy[J]. J Pept Sci, 2015, 21:186-200.
[3] Ying M, Chen GY, Lu WY. Recent advances and strategies in tumor vasculature targeted nano-drug delivery systems[J]. Curr Pharm Design, 2015, 21:3066-3075.
[4] Li Y, Gao GH, Lee DS. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers[J]. Adv Healthc Mater, 2013, 2:388-417.
[5] Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue:potential exploitation for the treatment of cancer[J]. Cancer Res, 1996, 56:1194-1198.
[6] Webb BA, Chimenti M, Jacobson MP, et al. Dysregulated pH:a perfect storm for cancer progression[J]. Nat Rev Cancer, 2011, 11:671-677.
[7] Wang RN, Ding Y, Zhou JP. Advances in research of photosensitizer anti-tumor target delivery systems based on photodynamic therapy[J]. Chin J New Drugs (中国新药杂志), 2014, 23:1897-1903.
[8] Peng CM, Shen J, Lu WY. Environment-responsive drug delivery systems for targeted cancer therapy[J]. J Chin Pharm Sci, 2015, 24:5-14.
[9] Huang YZ, Jiang YF, Wang HY, et al. Curb challenges of the "Trojan Horse" approach:smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery[J]. Adv Drug Deliv Rev, 2013, 65:1299-1315.
[10] Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell-penetrating peptides for medical and biological applications[J]. Adv Drug Deliv Rev, 2009, 61:953-964.
[11] Shi WJ, Bi LW, Xu RA. Tumor-targeting carrier equipped with cell-penetrating peptides[J]. Chin J Cancer Biother (中国肿瘤生物治疗杂志), 2010, 17:104-108.
[12] Li K, Lv XX, Hua F, et al. Targeting acute myeloid leukemia with a proapoptotic peptide conjugated to a toll-like receptor 2-mediated cell-penetrating peptide[J]. Int J Cancer, 2014, 134:692-702.
[13] Li Y, Wen G, Wang D, et al. A complementary strategy for enhancement of nanoparticle intracellular uptake[J]. Pharm Res, 2014, 31:2054-2064.
[14] Liu YR, Ji M, Wong MK, et al. Enhanced therapeutic efficacy of iRGD-conjugated crosslinked multilayer liposomes for drug delivery[J]. Biomed Res Int, 2013, 2013:378380.
[15] Vivès E, Schmidt J, Pèlegrin A. Cell-penetrating and celltargeting peptides in drug delivery[J]. Biochim Biophys Acta, 2008, 1786:126-138.
[16] Pooga M, Hällbrink M, Zorko M, et al. Cell penetration by transportan[J]. FASEB J, 1998, 12:67-77.
[17] Soomets U, Lindgren M, Gallet X, et al. Deletion analogues of transportan[J]. Biochim Biophys Acta, 2000, 1467:165-176.
[18] El-Andaloussi S, Järver P, Johansson HJ, et al. Cargodependent cytotoxicity and delivery efficacy of cell-penetrating peptides:a comparative study[J]. Biochem J, 2007, 407:285-292.
[19] Zhang W, Song JJ, Zhang BZ, et al. Design of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells[J]. Bioconjug Chem, 2011, 22:1410-1415.
[20] Wang M, Thanou M. Targeting nanoparticles to cancer[J]. Pharmacol Res, 2010, 62:90-99.
[21] Elbayoumi TA, Torchilin VP. Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice[J]. Mol Pharm, 2009, 6:246-254.
[22] Makovitzki A, Fink A, Shai Y. Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides[J]. Cancer Res, 2009, 69:3458-3463.
[23] Zhang QY, Tang J, Fu L, et al. A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system[J]. Biomaterials, 2013, 34:7980-7993.
[24] Song WT, Tang ZH, Zhang DW, et al. Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin[J]. Biomaterials, 2014, 35:3005-3014.
[25] Xu J, Liu C, Xu YN, et al. Mechanism of cellular uptake and transport mediated by integrin receptor targeting trimethyl chitosan nanoparticles[J]. Acta Pharm Sin (药学学报), 2015, 50:893-898.
[26] Shi KR, Li JP, Gao ZL, et al. A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin αvβ3 for the treatment of melanoma[J]. J Control Release, 2015, 217:138-150.
[27] Jiang TY, Zhang ZH, Zhang YL, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery[J]. Biomaterials, 2012, 33:9246-9258.
[28] Liang J, Wu WL, Xu XD, et al. pH Responsive micelle selfassembled from a new amphiphilic peptide as anti-tumor drug carrier[J]. Colloid Surface B, 2014, 114:398-403.
[29] Giancotti FG, Ruoslahti E. Integrin signaling[J]. Science, 1999, 285:1028-1032.
[30] Han SS, Li ZY, Zhu JY, et al. Dual-pH sensitive chargereversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery[J]. Small, 2015, 11:2543-2554.
[31] Gao WW, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery[J]. Mol Pharm, 2010, 7:1913-1920.
[32] Zhao Y, Ji TJ, Wang H, et al. Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging[J]. J Control Release, 2014, 177:11-19.
[33] Zaro JL, Fei L, Shen WC. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery[J]. J Control Release, 2012, 158:357-361.
[34] Fei LK, Yap LP, Conti PS, et al. Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidineglutamate co-oligopeptide[J]. Biomaterials, 2014, 35:4082-4087.
[35] Sun CM, Shen WC, Tu JS, et al. Interaction between cellpenetrating peptides and acid-sensitive anionic oligopeptides as a model for the design of targeted drug carriers[J]. Mol Pharm, 2014, 11:1583-1590.
[36] Quahab A, Cheraga N, Onoja V, et al. Novel pH-sensitive charge-reversal cell penetrating peptide conjugated PEG-PLA micelles for docetaxel delivery:in vitro study[J]. Int J Pharm, 2014, 466:233-245.
[37] Crawford J. Clinical uses of pegylated pharmaceuticals in oncology[J]. Cancer Treat Rev, 2002, 28:7-11.
[38] Zhang L, Wang Y, Gao HL. The construction of cell-penetrating peptide R8 and pH sensitive cleavable polyethylene glycols co-modified liposomes[J]. Acta Pharm Sin (药学学报), 2015, 50:760-766.
[39] Wang Y, Zhu DD, Zhou J, et al. Mesoscopic simulation studies on the formation mechanism of drug loaded polymeric micelles[J]. Colloid Surface B, 2015, 136:536-544.
[40] Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors[J]. J Control Release, 2007, 118:216-224.
[41] Cheng W, Jin MJ, Gao ZG, et al. Preparation and in vitro evaluation of pH-sensitive TAT peptide conjugated micelles[J]. Acta Pharm Sin (药学学报), 2011, 46:599-604.
相关文献:
1.李梦茹, 李腾, 莫然.胰腺癌靶向纳米递药系统的研究进展[J]. 药学学报, 2018,53(7): 1090-1099