药学学报, 2016, 51(6): 843-852
引用本文:
林璋, 祖先鹏, 谢海胜, 金慧子, 杨鸟, 刘心如, 张卫东. 肠道菌群与人体疾病发病机制的研究进展[J]. 药学学报, 2016, 51(6): 843-852.
LIN Zhang, ZU Xian-peng, XIE Hai-sheng, JIN Hui-zi, YANG Niao, LIU Xin-ru, ZHANG Wei-dong. Research progress in mechanism of intestinal microorganisms in human diseases[J]. Acta Pharmaceutica Sinica, 2016, 51(6): 843-852.

肠道菌群与人体疾病发病机制的研究进展
林璋1, 祖先鹏2, 谢海胜3, 金慧子1, 杨鸟2, 刘心如2, 张卫东1,2
1. 上海交通大学药学院, 上海 200240;
2. 第二军医大学药学院, 上海 200433;
3. 浙江工业大学长三角绿色制药协同创新中心, 浙江 杭州 310014
摘要:
2007年国际联合研究项目人类微生物组计划(The Human Microbiome Project, HMP)和人类肠道元基因(或宏基因)组学计划(Metagenomics of The Human Intestinal Tract, MetaHIT)正式启动,标志着肠道宏基因组研究的时代已经到来。人是由90%的共生微生物组成的超级生物体,微生物尤其是肠道微生物参与了人体的营养吸收和代谢,通过这种相互作用方式影响着人体的健康和疾病的发展。本文从多种途径综述肠道菌群对疾病发病机制的研究进展,旨在为寻找人类的健康和疾病的治疗靶点提供一些新的思路。
关键词:    肠道菌群      宏基因组学      代谢性疾病      肠道疾病      行为和认知障碍疾病      癌症      自身免疫性疾病     
Research progress in mechanism of intestinal microorganisms in human diseases
LIN Zhang1, ZU Xian-peng2, XIE Hai-sheng3, JIN Hui-zi1, YANG Niao2, LIU Xin-ru2, ZHANG Wei-dong1,2
1. School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China;
2. School of Pharmacy, Second Military Medical University, Shanghai 200433, China;
3. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
Abstract:
The international cooperated research projects of the Human Microbiome Project (HMP) and Metagenomics of The Human Intestinal Tract (MetaHIT) were officially launched in 2007, which indicated the era of metagenomics research of microorganisms in human gastrointestinal tract had been coming. Each human body is a superorganism which is composed of 90% commensal microorganisms, especially the intestinal microorganisms. The intestinal microorganisms play an important role on health maintenance since they are involved in the absorption and metabolism of nutrients in the human bodies. Herein, we review the research progress in the mechanism of intestinal microorganisms in human diseases. Our purpose is to provide novel ideas on human health and therapeutic targets of diseases.
Key words:    gut microbiota    metagenomics    metabolic disease    gastrointestinal disease    behavior and cognitive disorder    cancer    autoimmune disease   
收稿日期: 2015-09-14
DOI: 10.16438/j.0513-4870.2015-0803
基金项目: "长江学者奖励计划项目";国家自然科学基金资助项目(81230090,81520108030).
通讯作者: 刘心如,Tel/Fax:86-21-81871249,E-mail:liuxinru@hotmail.co.uk;张卫东,Tel/Fax:86-21-81871244,E-mail:wdzhangy@hotmail.com
Email: liuxinru@hotmail.co.uk;wdzhangy@hotmail.com
相关功能
PDF(3785KB) Free
打印本文
0
作者相关文章
林璋  在本刊中的所有文章
祖先鹏  在本刊中的所有文章
谢海胜  在本刊中的所有文章
金慧子  在本刊中的所有文章
杨鸟  在本刊中的所有文章
刘心如  在本刊中的所有文章
张卫东  在本刊中的所有文章

参考文献:
[1] Zhou XY, Liu YZ, Chen YX, et al. Advanced in analysis methods of animal intestinal flora structure[J]. J Microbiol (微生物学杂志), 2013, 33:81-86.
[2] Zhang W, Jiang S, Qian DW, et al. The interaction between ononin and human intestinal bacteria[J]. Acta Pharm Sin (药学学报), 2014, 49:1162-1168.
[3] Zhang W, Jiang S, Qian DW, et al. Metabolism of naringin produced by intestinal bacteria[J]. Acta Pharm Sin (药学学报), 2013, 48:1817-1822.
[4] Janssen AW, Kersten S. The role of the gut microbiota in metabolic health[J]. FASEB J, 2015, 29:3111-3123.
[5] Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101:15718-15723.
[6] Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci U S A, 2007, 104:979-984.
[7] Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut[J]. Gastroenterology, 2012, 142:1100-1101.
[8] Beutler B, Rietschel ET. Innate immune sensing and its roots:the story of endotoxin[J]. Nat Rev Immunol, 2003, 3:169-176.
[9] Lam YY, Ha CW, Campbell CR, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice[J]. PLoS One, 2012, 7:e34233.
[10] Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57:1470-1481.
[11] Muccioli GG, Naslain D, Bäckhed F, et al. The endocannabinoid system links gut microbiota to adipogenesis[J]. Mol Syst Biol, 2010, 6:392.
[12] Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proc Natl Acad Sci U S A, 2008, 105:16767-16772.
[13] Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the shortchain fatty acid receptor GPR43[J]. Nat Commun, 2013, 4:1829.
[14] Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-proteincoupled receptor FFAR2[J]. Diabetes, 2012, 61:364-371.
[15] Alex S, Lange K, Amolo T, et al. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ[J]. Mol Cell Biol, 2013, 33:1303-1316.
[16] Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19:576-585.
[17] Swann JR, Want EJ, Geier FM, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments[J]. Proc Natl Acad Sci U S A, 2011, 108 Suppl 1:4523-4530.
[18] Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of taurobeta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17:225-235.
[19] Moloney RD, Desbonnet L, Clarke G, et al. The microbiome:stress, health and disease[J]. Mamm Genome, 2014, 25:49-74.
[20] Bienenstock J, Collins S. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders:psycho-neuroimmunology and the intestinal microbiota:clinical observations and basic mechanisms[J]. Clin Exp Immunol, 2010, 160:85-91.
[21] Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour-epigenetic regulation of the gut-brain axis[J]. Genes Brain Behav, 2014, 13:69-86.
[22] Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology[J]. Proc Natl Acad Sci U S A, 2005, 102:11070-11075.
[23] Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology:human gut microbes associated with obesity[J]. Nature, 2006, 444:1022-1023.
[24] Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457:480-484.
[25] Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56:1761-1772.
[26] Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance[J]. Science, 1996, 271:665-668.
[27] Siebler J, Galle PR, Weber MM. The gut-liver-axis:endotoxemia, inflammation, insulin resistance and NASH[J]. J Hepatol, 2008, 48:1032-1034.
[28] Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides[J]. J Lipid Res, 2009, 50:90-97.
[29] Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice[J]. ISME J, 2013, 7:880-884.
[30] Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children:a case-control study[J]. BMC Med, 2013, 11:46.
[31] Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes[J]. Nature, 2008, 455:1109-1113.
[32] Valladares R, Sankar D, Li N, et al. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats[J]. PLoS One, 2010, 5:e10507.
[33] Xu J, Lian F, Zhao L, et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula[J]. ISME J, 2015, 9:552-562.
[34] Trøseid M, Nestvold TK, Rudi K, et al. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity:evidence from bariatric surgery[J]. Diabetes Care, 2013, 36:3627-3632.
[35] Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J]. Gut, 2014, 63:727-735.
[36] Xi C. Research progress on intestinal flora in the pathogenesis of non-alcoholic fatty liver disease[J]. Med Recapit (医学综述), 2014, 20:1953-1955.
[37] Frasinariu OE, Ceccarelli S, Alisi A, et al. Gut-liver axis and fibrosis in nonalcoholic fatty liver disease:an input for novel therapies[J]. Dig Liver Dis, 2013, 45:543-551.
[38] Li L, Chen L, Hu L, et al. Nuclear factor high-mobility group box1 mediating the activation of toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice[J]. Hepatology, 2011, 54:1620-1630.
[39] Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases[J]. Gut, 2009, 58:704-720.
[40] Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome[J]. Nat Commun, 2012, 3:1245.
[41] Chen L, Liu W, Li Y, et al. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process[J]. Int Immunopharmacol, 2013, 17:108-115.
[42] Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health:an integrative view[J]. Cell, 2012, 148:1258-1270.
[43] Barnich N, Carvalho FA, Glasser AL, et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease[J]. J Clin Invest, 2007, 117:1566-1574.
[44] Tang C, Kamiya T, Liu Y, et al. Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine[J]. Cell Host Microbe, 2015, 18:183-197.
[45] Mu CL, Zhu WY. microRNA regulation on host-microbiota interaction-a review[J]. Acta Microbiol Sin (微生物学报), 2013, 53:1018-1024.
[46] Dalmasso G, Nguyen HT, Yan Y, et al. Microbiota modulate host gene expression via microRNAs[J]. PLoS One, 2011, 6:e19293.
[47] Xue X, Feng T, Yao S, et al. Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40[J]. J Immunol, 2011, 187:5879-5886.
[48] Parisi G, Leandro G, Bottona E, et al. Small intestinal bacterial overgrowth and irritable bowel syndrome[J]. Am J Gastroenterol, 2003, 98:2572.
[49] Malinen E, Rinttilä T, Kajander K, et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR[J]. Am J Gastroenterol, 2005, 100:373-382.
[50] Verdú EF, Bercik P, Verma-Gandhu M, et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice[J]. Gut, 2006, 55:182-190.
[51] Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161:264-276.
[52] De Palma G, Blennerhassett P, Lu J, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice[J]. Nat Commun, 2015, 6:7735.
[53] Brenner SR. Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as beta-Nmethylamino-L-alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson-Dementia-Complex in humans and Equine Motor Neuron Disease in horses[J]. Med Hypotheses, 2013, 80:103.
[54] Tran L, Greenwood-Van Meerveld B. Age-associated remodeling of the intestinal epithelial barrier[J]. J Gerontol A Biol Sci Med Sci, 2013, 68:1045-1056.
[55] Hornig M. The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness[J]. Curr Opin Rheumatol, 2013, 25:488-795.
[56] Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain[J]. JAMA Pediatr, 2013, 167:374-379.
[57] Parracho HM, Bingham MO, Gibson GR, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children[J]. J Med Microbiol, 2005, 54:987-991.
[58] Adams JB, Romdalvik J, Ramanujam VM, et al. Mercury, lead, and zinc in baby teeth of children with autism versus controls[J]. J Toxicol Environ Health A, 2007, 70:1046-1051.
[59] Keku TO, Dulal S, Deveaux A, et al. The gastrointestinal microbiota and colorectal cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308:G351-G363.
[60] Akin H, Tözün N. Diet, microbiota, and colorectal cancer[J]. J Clin Gastroenterol, 2014, 48:S67-S69.
[61] Goedert JJ, Jones G, Hua X, et al. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women:a population-based case-control pilot study[J]. J Natl Cancer Inst, 2015, 107:djv147.
[62] Hutchinson L. Liver cancer:gut microbiota feeds obesityinduced liver cancer[J]. Nat Rev Clin Oncol, 2013, 10:428.
[63] Lida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342:967-970.
[64] Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342:971-976.
[65] Wang M, Karlsson C, Olsson C, et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema[J]. J Allergy Clin Immunol, 2008, 121:129-134.
[66] Verhulst SL, Vael C, Beunckens C, et al. A longitudinal analysis on the association between antibiotic use, intestinal microflora, and wheezing during the first year of life[J]. J Asthma, 2008, 45:828-832.
[67] Zhang X, Zhang DY, Jia HJ, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nat Med, 2015, 21:895-905.
[68] Guandalini S. Use of Lactobacillus-GG in paediatric Crohn's disease[J]. Dig Liver Dis, 2002, 34 Suppl 2:S63-S65.
[69] Ishikawa H, Akedo I, Umesaki Y, et al. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis[J]. J Am Coll Nutr, 2003, 22:56-63.
[70] Madsen K, Cornish A, Soper P, et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function[J]. Gastroenterology, 2001, 121:580-591.
[71] Schultz M, Veltkamp C, Dieleman LA, et al. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice[J]. Inflamm Bowel Dis, 2002, 8:71-80.
[72] Silk DBA, Davis A, Vulevic J, et al. Clinical trial:the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome[J]. Aliment Pharmcol Ther, 2009, 29:508-518.
[73] Messaoudi M, Violle N, Bisson JF, et al. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers[J]. Gut Microbes, 2011, 2:256-261.
[74] Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition[J]. Eur J Clin Nutr, 2007, 61:355-361.
[75] Tillisch K, Labus JS, Ebrat B, et al. 589 modulation of the brain-gut axis after 4-week intervention with a probiotic fermented dairy product[J]. Gastroenterology, 2012, 142:S-115.