药学学报, 2016, 51(6): 853-859
引用本文:
韩佳寅, 易艳, 梁爱华, 张宇实, 李春英, 王连嵋, 潘辰, 赵雍. Rho/ROCK信号通路研究进展[J]. 药学学报, 2016, 51(6): 853-859.
HAN Jia-yin, YI Yan, LIANG Ai-hua, ZHANG Yu-shi, LI Chun-ying, WANG Lian-mei, PAN Chen, ZHAO Yong. Research progress of Rho/ROCK signal pathway[J]. Acta Pharmaceutica Sinica, 2016, 51(6): 853-859.

Rho/ROCK信号通路研究进展
韩佳寅, 易艳, 梁爱华, 张宇实, 李春英, 王连嵋, 潘辰, 赵雍
中国中医科学院中药研究所, 中药鉴定与安全性检测评估北京市重点实验室, 北京 100700
摘要:
Rho GTP酶(Rho GTPase)属于Ras超家族,参与细胞迁移、吞噬、收缩和黏附等活动。ROCK又称Rho激酶(Rho-associated kinase),是目前功能研究最为详细的Rho下游靶效应分子。Rho/ROCK信号通路诱导细胞骨架重组、细胞迁移和应力纤维形成,与内皮通透性、组织收缩和生长等多种生理功能有关,参与糖尿病肾病、眼疾病、肿瘤、心脏病、神经损伤性疾病、高血压、辐射损伤和白血病等疾病的发生,作为药物研发靶点越来越得到人们的关注。本文主要针对Rho/ROCK信号通路的基本生物学特征、生理学作用与疾病的相关性和作为治疗靶点的治疗方法研究等进行综述。
关键词:    Rho GTP 酶      Rho      Rho 激酶      信号通路     
Research progress of Rho/ROCK signal pathway
HAN Jia-yin, YI Yan, LIANG Ai-hua, ZHANG Yu-shi, LI Chun-ying, WANG Lian-mei, PAN Chen, ZHAO Yong
Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
Abstract:
Rho GTPases belong to Ras superfamily, which is reported to involve in cell migration, phagocytosis, contraction and adhesion. ROCK (also known as Rho-associated kinase) is considered to be one of the most important downstream targets of Rho that is widely investigated. Rho/ROCK signal pathway induces cytoskeletal reorganization, cell migration and stress fiber formation, affects endothelial permeability, tissue constriction and growth, involves in diabetic nephropathy, eye disease, cancer, heart disease, nerve injury disease, hypertension, radiation injury and leukemia. As a novel drug research target, Rho/ROCK signal pathway has received more and more attention. This review provides the basic characteristics and physiological effects of Rho/ROCK signal pathway, the relationships between Rho/ROCK signal pathway and diseases, and the therapeutic methods based on the Rho/ROCK signal pathway.
Key words:    Rho GTPase    Rho    Rho-associated kinase    signal pathway   
收稿日期: 2015-10-11
DOI: 10.16438/j.0513-4870.2015-0906
基金项目: 国家科技重大专项资助项目(2015ZX09501004-003-001,2014ZX09304307001,2014ZX09201022-004);国家自然科学基金资助项目(81202993,81374057,81503349);中国中医科学院中药所基本科研业务费自主选题项目(ZZ2014023,ZXKT15031,ZXKT15013);中国中医科学院自选课题项目(Z2014063,Z2014075);中国中医科学院博士研究生创新人才培养基金资助项目(CX201508).
通讯作者: 梁爱华,Tel:86-10-84035683,E-mail:liangaihua@sina.com
Email: liangaihua@sina.com
相关功能
PDF(2186KB) Free
打印本文
0
作者相关文章
韩佳寅  在本刊中的所有文章
易艳  在本刊中的所有文章
梁爱华  在本刊中的所有文章
张宇实  在本刊中的所有文章
李春英  在本刊中的所有文章
王连嵋  在本刊中的所有文章
潘辰  在本刊中的所有文章
赵雍  在本刊中的所有文章

参考文献:
[1] Wojciak-Stothard B, Ridley AJ. Rho GTPases and the regulation of endothelial permeability[J]. Vascul Pharmacol, 2002, 39:187-199.
[2] Guo W, Meng JZ, Chen Y. Rho/Rho-kinase signalling pathways and vascular endothelial permeability[J]. J Biomed Eng Res (生物医学工程研究), 2009, 28:154-158.
[3] Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK:A key regulator of the cytoskeleton and cell polarity[J]. Cytoskeleton, 2010, 67:545-554.
[4] Riento K, Ridley AJ. Rocks:multifunctional kinases in cell behaviour[J]. Nat Rev Mol Cell Biol, 2003, 4:446-456.
[5] Li Q, Li XY, Liu AL. The research progress of Rhoassociated kinase in physiology and pathophysiology[J]. Chin Pharm J (中国药学杂志), 2011, 46:1860-1864.
[6] Morgan-Fisher M, Wewer UM, Yoneda A. Regulation of ROCK activity in cancer[J]. J Histochem Cytochem, 2013, 61:185-198.
[7] Amin E, Dubey BN, Zhang SC, et al. Rho-kinase:regulation, (dys)function, and inhibition[J]. Biol Chem, 2013, 394:1399-1410.
[8] Kumar P, Shen Q, Pivetti CD, et al. Molecular mechanisms of endothelial hyperpermeability:implications in inflammation[J]. Expert Rev Mol Med, 2009, 11:e19.
[9] Chen SC, Liu CC, Huang SY, et al. Vascular hyperpermeability in response to inflammatory mustard oil is mediated by Rho kinase in mice systemically exposed to arsenic[J]. Microvasc Res, 2011, 82:182-189.
[10] Yu Y, Qin J, Liu M, et al. Role of Rho kinase in lysophosphatidic acid-induced altering of blood-brain barrier permeability[J]. Int J Mol Med, 2014, 33:661-669.
[11] Bogatcheva NV, Zemskova MA, Poirier C, et al. The suppression of myosin light chain (MLC) phosphorylation during the response to lipopolysaccharide (LPS):beneficial or detrimental to endothelial barrier[J]. J Cell Physiol, 2011, 226:3132-3146.
[12] Breslin JW. ROCK and cAMP promote lymphatic endothelial cell barrier integrity and modulate histamine and thrombininduced barrier dysfunction[J]. Lymphat Res Biol, 2011, 9:3-11.
[13] Nakahara S, Tsutsumi K, Zuinen T, et al. FilGAP, a Rho-ROCK-regulated GAP for Rac, controls adherens junctions in MDCK cells[J]. J Cell Sci, 2015, 128:2047-2056.
[14] Elamin E, MascleeA, Dekker J, et al. Ethanol disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated Rho/ROCK activation[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306:G677-G685.
[15] Zhang K, Zhang H, Xiang H, et al. TGF-β1 induces the dissolution of tight junctions in human renal proximal tubular cells:role of the RhoA/ROCK signaling pathway[J]. Int J Mol Med, 2013, 32:464-468.
[16] Schaafsma D, Gosens R, Bos IS, et al. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction[J]. Br J Pharmacol, 2004, 143:477-484.
[17] Hutchinson JL, Rajagopal SP, Yuan M, et al. Lipopolysaccharide promotes contraction of uterine myocytes via activation of Rho/ROCK signaling pathways[J]. FASEB J, 2014, 28:94-105.
[18] Wang Y, Zheng XR, Riddick N, et al. ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells[J]. Circ Res, 2009, 104:531-540.
[19] Goetsch KP, Snyman C, Myburgh KH, et al. ROCK-2 is associated with focal adhesion maturation during myoblast migration[J]. J Cell Biochem, 2014, 115:1299-1307.
[20] Nobe K, Nobe H, Yoshida H, et al. Rho A and the Rho kinase pathway regulate fibroblast contraction:enhanced contraction in constitutively active Rho A fibroblast cells[J]. Biochem Biophys Res Commun, 2010, 399:292-299.
[21] Tan HB, Zhong YS, Cheng Y, et al. Rho/ROCK pathway and neural regeneration:a potential therapeutic target for central nervous system and optic nerve damage[J]. Int J Ophthalmol, 2011, 4:652-657.
[22] Roloff F, Scheiblich H, Dewitz C, et al. Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling[J]. PLoS One, 2015, 10:e0118536.
[23] Koch JC, Tönges L, Barski E, et al. ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS[J]. Cell Death Dis, 2014, 5:e1225.
[24] Lin MN, Shang DS, Sun W, et al. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers[J]. Brain Res, 2013, 1513:1-8.
[25] Peng F, Wu D, Gao B, et al. RhoA/Rho-kinase contribute to the pathogenesis of diabetic renal disease[J]. Diabetes, 2008, 57:1683-1692.
[26] Xie X, Peng J, Huang K, et al. Activation of RhoA/ROCK regulates NF-κB signaling pathway in experimental diabetic nephropathy[J]. Mol Cell Endocrinol, 2013, 369:86-97.
[27] Komers R. Rho kinase inhibition in diabetic nephropathy[J].Curr Opin Nephrol Hypertens, 2011, 20:77-83.
[28] Ruiz-Loredo AY, López E, López-Colomé AM. Thrombin promotes actin stress fiber formation in RPE through Rho/ROCK-mediated MLC phosphorylation[J]. J Cell Physiol, 2011, 226:414-423.
[29] Lu QY, Chen W, Lu L, et al. Involvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy[J]. Int J Clin Exp Pathol, 2014, 7:7268-7277.
[30] Wang J, Liu X, Zhong Y. Rho/Rho-associated kinase pathway in glaucoma (Review)[J]. Int J Oncol, 2013, 43:1357-1367.
[31] Wilhelm I, Fazakas C, Molnár J, et al. Role of Rho/ROCK signaling in the interaction of melanoma cells with the bloodbrain barrier[J]. Pigment Cell Melanoma Res, 2014, 27:113-123.
[32] Matsuoka T, Yashiro M. Rho/ROCK signaling in motility and metastasis of gastric cancer[J]. World J Gastroenterol, 2014, 20:13756-13766.
[33] Tsai SH, Huang PH, Peng YJ, et al. Zoledronate attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of Rho/ROCK-dependent JNK and NF-κB pathway[J]. Cardiovasc Res, 2013, 100:501-510.
[34] Jeong KJ, Park SY, Cho KH, et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion[J]. Oncogene, 2012, 31:4279-4289.
[35] Wang J, Sun L, Yang M, et al. DEK depletion negatively regulates Rho/ROCK/MLC pathway in non-small cell lung cancer[J]. J Histochem Cytochem, 2013, 61:510-521.
[36] Gao HC, Zhao H, Zhang WQ, et al. The role of the Rho/Rock signaling pathway in the pathogenesis of acute ischemic myocardial fibrosis in rat models[J]. Exp Ther Med, 2013, 5:1123-1128.
[37] Ge GH, Dou HJ, Yang SS, et al. Glucagon-like peptide-1 protects against cardiac microvascular endothelial cells injured by high glucose[J]. Asian Pac J Trop Med, 2015, 8:73-78.
[38] Hung CN, Huang HP, Wang CJ, et al. Sulforaphane inhibits TNF-α-induced adhesion molecule expression through the Rho A/ROCK/NF-κB signaling pathway[J]. J Med Food, 2014, 17:1095-1102.
[39] Yang R, Chang L, Liu S, et al. High glucose induces Rho/ROCK-dependent visfatin and type I procollagen expression in rat primary cardiac fibroblasts[J]. Mol Med Rep, 2014, 10:1992-1998.
[40] Shi J, Wei L. Rho kinases in cardiovascular physiology and pathophysiology:the effect of fasudil[J]. J Cardiovasc Pharmacol, 2013, 62:341-354.
[41] Sawada N,Liao JK. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis[J]. Antioxid Redox Signal, 2014, 20:1251-1267.
[42] Raad M, EI Tal T, Gul R, et al. Neuroproteomics approach and neurosystems biology analysis:ROCK inhibitors as promising therapeutic targets in neurodegeneration and neurotrauma[J]. Electrophoresis, 2012, 33:3659-3668.
[43] Forgione N, Fehlings MG. Rho-ROCK inhibition in the treatment of spinal cord injury[J]. World Neurosurg, 2014, 82:e535-e539.
[44] Nagaoka T, Gebb SA, Karoor V, et al. Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat[J]. J Appl Physiol, 2006, 100:996-1002.
[45] Smith CJ, Santhanam L, Alexander LM. Rho-kinase activity and cutaneous vasoconstriction is upregulated in essential hypertensive humans[J]. Microvasc Res, 2013, 87:58-64.
[46] Monceau V, Pasinetti N, Schupp C. Modulation of the Rho/ROCK pathway in heart and lung after thorax irradiation reveals targets to improve normal tissue toxicity[J]. Curr Drug Targets, 2010, 11:1395-1404.
[47] Rousseau M, Gaugler MH, Rodallec A, et al. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration[J]. Biochem Biophys Res Commun, 2011, 414:750-755.
[48] Molli PR, Pradhan MB, Advani SH, et al. RhoA:a therapeutic target for chronic myeloid leukemia[J]. Mol Cancer, 2012, 11:16.
[49] Palanivel R, Ganguly R, Turdi S, et al. Adiponectin stimulates Rho-mediated actin cytoskeleton remodeling and glucose uptake via APPL1 in primary cardiomyocytes[J]. Metabolism, 2014, 63:1363-1373.
[50] Kohno M, Watanabe M, Goto T, et al. Attenuation of lung ischemia-reperfusion injury by rho-associated kinase inhibition in a rat model of lung transplantation[J]. Ann Thorac Cardiovasc Surg, 2014, 20:359-364.
[51] Routhier A, Astuccio M, Lahey D, et al. Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth[J]. Oncol Rep, 2010, 23:861-867.
[52] Nozaki Y, Kinoshita K, Hino S, et al. Signaling Rho-kinase mediates inflammation and apoptosis in T cells and renal tubules in cisplatin nephrotoxicity[J]. Am J Physiol Renal Physiol, 2015, 308:F899-F909.
[53] Hu H, Chen W, Ding J, et al. Fasudil prevents calcium oxalate crystal deposit and renal fibrogenesis in glyoxylateinduced nephrolithic mice[J]. Exp Mol Pathol, 2015, 98:277-285.
[54] Park JW, Park CH, Kim IJ, et al. Rho kinase inhibition by fasudil attenuates cyclosporine-induced kidney injury[J]. J Pharmacol Exp Ther, 2011, 338:271-279.
[55] Li H, Peng W, Jian W, et al. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion[J]. Cardiovasc Diabetol, 2012, 11:65.
[56] Yin L, Morishige K, Takahashi T, et al. Fasudil inhibits vascular endothelial growth factor-induced angiogenesis in vitro and in vivo[J]. Mol Cancer Ther, 2007, 6:1517-1525.
[57] Xin YL, Yu JZ, Yang XW, et al. FSD-C10:a more promising novel ROCK inhibitor than Fasudil for treatment of CNS autoimmunity[J]. Biosci Rep, 2015. DOI:10.1042/BSR20150032.
[58] Yuan TY, Yan Y, Wu YJ, et al. Vasodilatory effect of a novel Rho-kinase inhibitor, DL0805-2, on the rat mesenteric artery and its potential mechanisms[J]. Cardiovasc Drugs Ther, 2014, 28:415-424.
[59] Shen W, Wang L, Pi R, et al. L-F001, a multifunctional ROCK inhibitor prevents paraquat-induced cell death through attenuating ER stress and mitochondrial dysfunction in PC12 cells[J]. Biochem Biophys Res Commun, 2015, 464:794-799.
[60] Doe C, Bentley R, Behm DJ, et al. Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities[J]. J Pharmacol Exp Ther, 2007, 320:89-98.
[61] Tsukahara R, Umazume K, Yamakawa N, et al. Dasatinib affects focal adhesion and myosin regulation to inhibit matrix contraction by Muller cells[J]. Exp Eye Res, 2015, 139:90-96.
[62] Ai NN, Li S, Zhong CM, et al. Recent advances of Rhoassociated protein kinase (ROCK) in cardio-cerebrovascular diseases[J]. Prog Mod Biomed (现代生物医学进展), 2015, 15:4198-4200.