药学学报, 2016, 51(6): 866-872
赵香玉, 王耀, 王贵彬, 张建军. 阿尔茨海默病与铁稳态失常及相关药物研发现状[J]. 药学学报, 2016, 51(6): 866-872.
ZHAO Xiang-yu, WANG Yao, WANG Gui-bin, ZHANG Jian-jun. Disruption of iron homeostasis and relevant pharmacotherapies in Alzheimer's disease[J]. Acta Pharmaceutica Sinica, 2016, 51(6): 866-872.

赵香玉, 王耀, 王贵彬, 张建军
中国医学科学院、北京协和医学院药物研究所, 新药作用机制与药效评价北京市重点实验室, 北京 100050
铁是人体含量最多的金属元素,参与多种生理活动,对神经系统功能的发挥也起着重要作用。正常状态下,铁稳态受到严格的调控,铁过量或不足均会引发相应疾病。大量研究显示阿尔茨海默病(Alzheimer's disease, AD)患者机体铁稳态失常,并且铁稳态的失常与AD标志性病理变化相关。虽然针对AD与铁稳态关系的研究很多,但目前铁在AD发病中的确切地位尚不明确。本文将从生理状态下铁稳态的维持、铁稳态异常在AD发病中发挥的作用和以铁清除为靶点的药物研发现状进行综述。
关键词:    阿尔茨海默病      铁稳态      氧化应激      β 淀粉样蛋白      载脂蛋白E      铁清除剂     
Disruption of iron homeostasis and relevant pharmacotherapies in Alzheimer's disease
ZHAO Xiang-yu, WANG Yao, WANG Gui-bin, ZHANG Jian-jun
Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Iron is the most abundant metal element to support the body's physiological activities and play crucial roles in the central nervous system. Iron homeostasis is under strict control in normal circumstances, and some diseases will occur once the homeostasis was disrupted. Numerous researches suggest that iron homeostasis disruptes in Alzheimer's disease (AD) and the homeostasis disruption interacts with AD's hallmarks. Dispute still exists on how iron plays a role in AD despite of the great number of researches. This article will focus on iron metabolism, normal function in the brain and recent therapies of AD based on iron chelation.
Key words:    Alzheimer's disease    iron homeostasis    oxidative stress    amyloid-β    apolipoprotein E    iron chelator   
收稿日期: 2016-03-15
DOI: 10.16438/j.0513-4870.2016-0220
基金项目: 科技部国际合作项目(2010DFB32900);国家自然科学基金资助项目面上项目(81471355).
通讯作者: 张建军,Tel/Fax:86-10-63182392,E-mail:jjzhang@imm.ac.cn
Email: jjzhang@imm.ac.cn
PDF(355KB) Free
赵香玉  在本刊中的所有文章
王耀  在本刊中的所有文章
王贵彬  在本刊中的所有文章
张建军  在本刊中的所有文章

[1] Maccioni RB, Muñoz JP, Barbeito L. The molecular bases of Alzheimer's disease and other neurodegenerative disorders[J]. Arch Med Res, 2001, 32:367-381.
[2] Mecocci P. Oxidative stress in mild cognitive impairment and Alzheimer disease:a continuum[J]. J Alzheimers Dis, 2004, 6:159-163.
[3] Todorich B, Pasquini JM, Garcia CI, et al. Oligodendrocytes and myelination:the role of iron[J]. Glia, 2009, 57:467-478.
[4] Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain[J]. J Neurochem, 1958, 3:41-51.
[5] Markesbery WR, Ehmann WD, Alauddin M, et al. Brain trace element concentrations in aging[J]. Neurobiol Aging, 1984, 5:19-28.
[6] Tao Y, Wang Y, Rogers JT, et al. Perturbed iron distribution in Alzheimer's disease serum, cerebrospinal fluid, and selected brain regions:a systematic review and meta-analysis[J]. J Alzheimers Dis, 2015, 42:679-690.
[7] Koury MJ, Ponka P. New insights into erythropoiesis:the roles of folate, vitamin B12, and iron[J]. Annu Rev Nutr, 2004, 24:105-131.
[8] Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307:G397-G409.
[9] McCarthy RC, Kosman DJ. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells[J]. PLoS One, 2014, 9:e89003.
[10] Kühn LC. Iron regulatory proteins and their role in controlling iron metabolism[J]. Metallomics, 2015, 7:232-243.
[11] Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306:2090-2093.
[12] Raven EP, Lu PH, Tishler TA, et al. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging[J]. J Alzheimers Dis, 2013, 37:127-136.
[13] De Reuck JL, Deramecourt V, Auger F, et al. Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases:a semi-quantitative 7.0 T magnetic resonance imaging study[J]. Eur J Neurol, 2014, 21:1026-1031.
[14] Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment[J]. J Alzheimers Dis, 2010, 19:363-372.
[15] González-Domínguez R, Garcia-Barrera T, Gómez-Ariza JL. Homeostasis of metals in the progression of Alzheimer's disease[J]. Biometals, 2014, 27:539-549.
[16] Schrag M, Mueller C, Oyoyo U, et al. Iron, zinc and copper in the Alzheimer's disease brain:a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion[J]. Prog Neurobiol, 2011, 94:296-306.
[17] Wang ZX, Tan L, Wang HF, et al. Serum iron, zinc, and copper levels in patients with Alzheimer's disease:a replication study and meta-analyses[J]. J Alzheimers Dis, 2015, 47:565-581.
[18] Dong XH, Gao WJ, Shao TM, et al. Age-related changes of brain iron load changes in the frontal cortex in APP swe/PS1ΔE9 transgenic mouse model of Alzheimer's disease[J]. J Trace Elem Med Biol, 2015, 30:118-123.
[19] Lei P, Ayton S, Appukuttan AT, et al. Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse[J]. Neurobiol Dis, 2015, 81:168-175.
[20] Meadowcroft MD, Connor JR, Yang QX. Cortical iron regulation and inflammatory response in Alzheimer's disease and APPswe/PS1ΔE9 mice:a histological perspective[J]. Front Neurosci, 2015, 9:255.
[21] Wang X, Wang W, Li L, et al. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease[J]. Biochim Biophys Acta, 2014, 1842:1240-1247.
[22] Dröge W. Free radicals in the physiological control of cell function[J]. Physiol Rev, 2002, 82:47-95.
[23] Valko M, Jomova K, Rhodes CJ, et al. Redox- and nonredox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90:1-37.
[24] Duce JA, Tsatsanis A, Cater MA, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease[J]. Cell, 2010, 142:857-867.
[25] Cho HH, Cahill CM, Vanderburg CR, et al. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1[J]. J Biol Chem, 2010, 285:31217-31232.
[26] Becerril-Ortega J, Bordji K, Fréret T, et al. Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease[J]. Neurobiol Aging, 2014, 35:2288-2301.
[27] Li X, Liu Y, Zheng Q, et al. Ferritin light chain interacts with PEN-2 and affects γ-secretase activity[J]. Neurosci Lett, 2013, 548:90-94.
[28] Everett J, Céspedes E, Shelford LR, et al. Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer's disease peptide β-amyloid1-42[J]. J R Soc Interface, 2014, 11:20140165.
[29] Yu JT, Tan L, Hardy J. Apolipoprotein E in Alzheimer's disease:an update[J]. Annu Rev Neurosci, 2014, 37:79-100.
[30] Wood H. Alzheimer disease:iron-the missing link between ApoE and Alzheimer disease?[J]. Nat Rev Neurol, 2015, 11:369.
[31] Ayton S, Faux NG. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE[J]. Nat Commun, 2015; 6:6760.
[32] McLachlan DRC, Kruck TPA, Kalow W, et al. Intramuscular desferrioxamine in patients with Alzheimer's disease[J]. Lancet, 1991, 337:1304-1308.
[33] Hanson LR, Roeytenberg A, Martinez PM, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke[J]. J Pharmacol Exp Ther, 2009, 330:679-686.
[34] Hanson LR, Fine JM, Renner DB, et al. Intranasal delivery of deferoxamine reduces spatial memory loss in APP/PS1 mice[J]. Drug Deliv Transl Res, 2012, 2:160-168.
[35] Fine JM, Renner DB, Forsberg AC, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation[J]. Neurosci Lett, 2015, 584:362-367.
[36] Guo C, Wang T, Zheng W, et al. Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2013, 34:562-575.
[37] Guo C, Zhang YX, Wang T, et al. Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1α pathway on the brain of APP/PS1 transgenic mice[J]. Front Aging Neurosci, 2015, 7:104.
[38] Fine JM, Baillargeon AM, Renner DB, et al. Intranasal deferoxamine improves performance in radial arm water maze, stabilizes HIF-1α, and phosphorylates GSK3β in P301L tau transgenic mice[J]. Exp Brain Res, 2012, 219:381-390.
[39] Maher P, Kontoghiorghes GJ. Characterization of the neuronprotective potential of derivatives of the iron chelating drug deferiprone[J]. Neurochem Res, 2015, 40:609-620.
[40] Prasanthi JR, Schrag M, Dasari B, et al. Deferiprone reduces amyloid-β and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet[J]. J Alzheimers Dis, 2012, 30:167-182.
[41] Banerjee P, Sahoo A, Anand S, et al. The oral iron chelator, deferasirox, reverses the age-dependent alterations in iron and amyloid-β homeostasis in rat brain:implications in the therapy of Alzheimer's disease[J]. J Alzheimers Dis, 2015, 49:681-693.
[42] Kamalinia G, Khodagholi F, Atyabi F, et al. Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders:in vitro and in vivo studies[J]. Mol Pharm, 2013, 10:4418-4431.
[43] Bareggi SR, Cornelli U. Clioquinol:review of its mechanisms of action and clinical uses in neurodegenerative disorders[J]. CNS Neurosci Ther, 2012, 18:41-46.
[44] Seo BR, Lee SJ, Cho KS, et al. The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1-transfected Chinese hamster ovary cells[J]. Neurobiol Aging, 2015, 36:3228-3238.
[45] Wang T, Wang CY, Shan ZY, et al. Clioquinol reduces zinc accumulation in neuritic plaques and inhibits the amyloidogenic pathway in AβPP/PS1 transgenic mouse brain[J]. J Alzheimers Dis, 2012, 29:549-559.
[46] Zhang YH, Raymick J, Sarkar S, et al. Efficacy and toxicity of clioquinol treatment and A-β42 inoculation in the APP/PS1 mouse model of Alzheimer's disease[J]. Curr Alzheimer Res, 2013, 10:494-506.
[47] Robert A, Liu Y, Nguyen M, et al. Regulation of copper and iron homeostasis by metal chelators:a possible chemotherapy for Alzheimer's disease[J]. Acc Chem Res, 2015, 48:1332-1339.
[48] Zheng H, Gal S, Weiner LM, et al. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases:in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition[J]. J Neurochem, 2005, 95:68-78.
[49] Weinreb O, Mandel S, Bar-Am O, et al. Iron-chelating backbone coupled with monoamine oxidase inhibitory moiety as novel pluripotential therapeutic agents for Alzheimer's disease:a tribute to Moussa Youdim[J]. J Neural Transm, 2011, 118:479-492.
[50] Kupershmidt L, Amit T, Bar-Am O, et al. The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer's disease[J]. Antioxid Redox Signal, 2012, 17:860-877.
[51] Mechlovich D, Amit T, Bar-Am O, et al. The novel multitarget iron chelator, M30 modulates HIF-1α-related glycolytic genes and insulin signaling pathway in the frontal cortex of APP/PS1 Alzheimer's disease mice[J]. Curr Alzheimer Res, 2014, 11:119-127.
[52] Salkovic-Petrisic M, Knezovic A, Osmanovic-Barilar J, et al. Multi-target iron-chelators improve memory loss in a rat model of sporadic Alzheimer's disease[J]. Life Sci, 2015, 136:108-119.
[53] Sofic E, Salkovic-Petrisic M, Tahirovic I, et al. Brain catalase in the streptozotocin-rat model of sporadic Alzheimer's disease treated with the iron chelator-monoamine oxidase inhibitor, M30[J]. J Neural Transm, 2015, 122:559-564.
[54] Nunes A, Marques SM, Quintanova C, et al. Multifunctional iron-chelators with protective roles against neurodegenerative diseases[J]. Dalton Trans, 2013, 42:6058-6073.
[55] Sheng R, Tang L, Jiang L, et al. Novel 1-phenyl-3-hydroxy-4-pyridinone derivatives as multifunctional agents for the therapy of Alzheimer's disease[J]. ACS Chem Neurosci, 2016, 7:69-81.
[56] Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway[J]. ACS Nano, 2014, 8:76-103.
[57] Wang C, Zhang X, Teng Z, et al. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice[J]. Eur J Pharmacol, 2014, 740:312-320.
[58] Reznichenko L, Amit T, Zheng H, et al. Reduction of ironregulated amyloid precursor protein and β-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures:implications for iron chelation in Alzheimer's disease[J]. J Neurochem, 2006, 97:527-536.
[59] Baum L, Ng A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models[J]. J Alzheimers Dis, 2004, 6:367-377.
[60] Ji X, Huang L, Lin Q, et al. Characteristics and kinetics of iron release from the ferritin under the EGCG reduction[J]. Biol Trace Elem Res, 2012, 146:134-140.
[61] Badria FA, Ibrahim AS, Badria AF, et al. Curcumin attenuates iron accumulation and oxidative stress in the liver and spleen of chronic iron-overloaded rats[J]. PLoS One, 2015, 10:e0134156.
[62] Belkacemi A, Doggui S, Dao L, et al. Challenges associated with curcumin therapy in Alzheimer disease[J]. Expert Rev Mol Med, 2011, 13:e34.
[63] Huang XT, Qian ZM, He X, et al. Reducing iron in the brain:a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease[J]. Neurobiol Aging, 2014, 35:1045-1054.
1.刘林, 赵宇红, 曾常青, 曾宇.钩藤在阿尔茨海默病模型中的药理作用研究进展[J]. 药学学报, 2016,51(4): 536-542