药学学报, 2016, 51(6): 873-878
引用本文:
庄新品, 竺青. 1-磷酸鞘氨醇/1-磷酸鞘氨醇受体1与T细胞迁移[J]. 药学学报, 2016, 51(6): 873-878.
ZHUANG Xin-pin, ZHU Qing. Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 and T cell migration[J]. Acta Pharmaceutica Sinica, 2016, 51(6): 873-878.

1-磷酸鞘氨醇/1-磷酸鞘氨醇受体1与T细胞迁移
庄新品, 竺青
中国医学科学院、北京协和医学院药物研究所, 北京 100050
摘要:
脂质第二信使分子1-磷酸鞘氨醇(sphingosine-1-phosphate, S1P)能够与1-磷酸鞘氨醇受体(sphingosine-1-phosphate receptors, S1PRs)结合参与多种生理过程,包括中枢神经系统稳态、细胞因子生成和介导淋巴细胞迁移等。T细胞主要表达S1PR1。S1P/S1PR1在T细胞迁移中发挥核心作用,这对于T细胞成熟、归巢和活化具有重要意义。S1P/S1PR1在T细胞迁移中的作用使其成为治疗免疫性疾病的热门药物作用靶点。本综述主要总结了现阶段S1P/S1PR1介导T细胞迁移的相关机制以及作为靶点药物的临床研究进展。
关键词:    1-磷酸鞘氨醇      1-磷酸鞘氨醇受体1      T 细胞迁移      药物靶点     
Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 and T cell migration
ZHUANG Xin-pin, ZHU Qing
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Lipid second messenger sphingosine-1-phosphate (S1P) can activate sphingosine-1-phosphate receptors (S1PRs) and participate in many biological processes, such as central nervous system homeostasis, cytokine production and T cell migration. S1PR1 is the main S1PR expressed on T cell surface. The interaction between S1P and S1PR1 plays a core role in T cell migration, which is important for T cell maturation, homing and activation. The central function of S1P/S1PR1 in T cell migration made it a popular drug target in treatment research of immune diseases. This review summarizes the current knowledge of the mechanism of S1P/S1PR1 mediating T cell migration and the research progress of S1P/S1PR1 as drug target.
Key words:    sphingosine-1-phosphate    sphingosine-1-phosphate receptor 1    T cell migration    drug target   
收稿日期: 2016-03-30
DOI: 10.16438/j.0513-4870.2016-0293
基金项目: 国家自然科学基金资助项目(31170872,31370922);北京市自然科学基金资助项目(5131002).
通讯作者: 竺青,Tel:86-10-61271611,E-mail:zhuqing@imm.ac.cn
Email: zhuqing@imm.ac.cn
相关功能
PDF(2260KB) Free
打印本文
0
作者相关文章
庄新品  在本刊中的所有文章
竺青  在本刊中的所有文章

参考文献:
[1] Rosen H, Gonzalez-Cabrera PJ, Sanna MG, et al. Sphingosine 1-phosphate receptor signaling[J]. Annu Rev Biochem, 2009, 78:743-768.
[2] Liu Y, Wada R, Yamashita T, et al. Edg-1, the G proteincoupled receptor for sphingosine-1-phosphate, is essential for vascular maturation[J]. J Clin Invest, 2000, 106:951-961.
[3] Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720(fingolimod) in multiple sclerosis[J]. Arch Pharm Res, 2010, 33:1567-1574.
[4] Garris CS, Blaho VA, Hla T, et al. Sphingosine-1-phosphate receptor 1 signalling in T cells:trafficking and beyond[J]. Immunology, 2014, 142:347-353.
[5] Baeyens A, Fang V, Chen C, et al. Exit strategies:S1P signaling and T cell migration[J]. Trends Immunol, 2015, 36:778-787.
[6] Aoki M, Aoki H, Ramanathan R, et al. Sphingosine-1-phosphate signaling in immune cells and inflammation:roles and therapeutic potential[J]. Mediat Inflamm, 2016, 2016:8606878.
[7] Pappu R, Schwab SR, Cornelissen I, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate[J]. Science, 2007, 316:295-298.
[8] Grigorova IL, Panteleev M, Cyster JG. Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure[J]. Proc Natl Acad Sci U S A, 2010, 107:20447-20452.
[9] Schwab SR, Pereira JP, Matloubian M, et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients[J]. Science, 2005, 309:1735-1739.
[10] Ito K, Anada Y, Tani M, et al. Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes[J]. Biochem Biophys Res Commun, 2007, 357:212-217.
[11] Oo ML, Thangada S, Wu MT, et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor[J]. J Biol Chem, 2007, 282:9082-9089.
[12] Thangada S, Khanna KM, Blaho VA, et al. Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics[J]. J Exp Med, 2010, 207:1475-1483.
[13] Arnon TI, Xu Y, Lo C, et al. GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attracttion to blood[J]. Science, 2011, 333:1898-1903.
[14] Wang W, Graeler MH, Goetzl EJ. Type 4 sphingosine 1-phosphate G protein-coupled receptor (S1P4) transduces S1P effects on T cell proliferation and cytokine secretion without signaling migration[J]. FASEB J, 2005, 19:1731-1733.
[15] Shah DK, Zúñiga-Pflücker JC. An overview of the intrathymic intricacies of T cell development[J]. J Immunol, 2014, 192:4017-4023.
[16] Zachariah MA, Cyster JG. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction[J]. Science, 2010, 328:1129-1135.
[17] Weinreich MA, Hogquist KA. Thymic emigration:when and how T cells leave home[J]. J Immunol, 2008, 181:2265-2270.
[18] Matloubian M, Lo CG, Cinamon G, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1[J]. Nature, 2004, 427:355-360.
[19] Allende ML, Dreier JL, Mandala S, et al. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration[J]. J Biol Chem, 2004, 279:15396-15401.
[20] Allende ML, Zhou D, Kalkofen DN, et al. S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues[J]. FASEB J, 2008, 22:307-315.
[21] Odumade OA, Weinreich MA, Jameson SC, et al. Kr üppellike factor 2 regulates trafficking and homeostasis of gammadelta T cells[J]. J Immunol, 2010, 184:6060-6066.
[22] Bardi G, Lipp M, Baggiolini M, et al. The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC[J]. Eur J Immunol, 2001, 31:3291-3297.
[23] Schwab SR, Cyster JG. Finding a way out:lymphocyte egress from lymphoid organs[J]. Nat Immunol, 2007, 8:1295-1301.
[24] Cahalan MD, Parker I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs[J]. Annu Rev Immunol, 2008, 26:585-626.
[25] Pham TH, Okada T, Matloubian M, et al. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress[J]. Immunity, 2008, 28:122-133.
[26] Nakai A, Hayano Y, Furuta F, et al. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors[J]. J Exp Med, 2014, 211:2583-2598.
[27] Mescher MF, Curtsinger JM, Agarwal P, et al. Signals required for programming effector and memory development by CD8+ T cells[J]. Immunol Rev, 2006, 211:81-92.
[28] Gómez D, Diehl MC, Crosby EJ, et al. Effector T cell egress via afferent lymph modulates local tissue inflammation[J]. J Immunol, 2015, 195:3531-3536.
[29] Mitchell J. Lymphocyte circulation in the spleen. Marginal zone bridging channels and their possible role in cell traffic[J]. Immunology, 1973, 24:93-107.
[30] Ramos-Perez WD, Fang V, Escalante-Alcalde D, et al. A map of the distribution of sphingosine 1-phosphate in the spleen[J]. Nat Immunol, 2015, 16:1245-1252.
[31] Sheridan BS, Lefrançois L. Regional and mucosal memory T cells[J]. Nat Immunol, 2011, 12:485-491.
[32] Schenkel JM, Masopust D. Tissue-resident memory T cells[J]. Immunity, 2014, 41:886-897.
[33] Mehling M, Brinkmann V, Antel J, et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis[J]. Neurology, 2008, 71:1261-1267.
[34] Mackay LK, Braun A, Macleod BL, et al. Cutting edge:CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention[J]. J Immunol, 2015, 194:2059-2063.
[35] Carbone FR. Tissue-resident memory T cells and fixed immune surveillance in nonlymphoid organs[J]. J Immunol, 2015, 195:17-22.
[36] Mackay LK, Rahimpour A, Ma JZ, et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin[J]. Nat Immunol, 2013, 14:1294-1301.
[37] Carter NJ, Keating GM. Glatiramer acetate:a review of its use in relapsing-remitting multiple sclerosis and in delaying the onset of clinically definite multiple sclerosis[J]. Drugs, 2010, 70:1545-1577.
[38] Brinkmann V. FTY720(fingolimod) in multiple sclerosis:therapeutic effects in the immune and the central nervous system[J]. Br J Pharmacol, 2009, 158:1173-1182.
[39] Mullershausen F, Zecri F, Cetin C, et al. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors[J]. Nat Chem Biol, 2009, 5:428-434.
[40] Zhi L, Kim P, Thompson BD, et al. FTY720 blocks egress of T cells in part by abrogation of their adhesion on the lymph node sinus[J]. J Immunol, 2011, 187:2244-2251.
[41] Sawicka E, Dubois G, Jarai G, et al. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity[J]. J Immunol, 2005, 175:7973-7980.
[42] Daniel C, Sartory N, Zahn N, et al. FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells[J]. J Immunol, 2007, 178:2458-2468.
[43] Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523:337-341.
[44] Takabe K, Paugh SW, Milstien S, et al. "Inside-out" signaling of sphingosine-1-phosphate:therapeutic targets[J]. Pharmacol Rev, 2008, 60:181-195.
[45] Kunkel GT, Maceyka M, Milstien S, et al. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond[J]. Nat Rev Drug Discov, 2013, 12:688-702.
[46] Liu G, Yang K, Burns S, et al. The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and regulatory T cells[J]. Nat Immunol, 2010, 11:1047-1056.
[47] Lai WQ, Goh HH, Bao Z, et al. The role of sphingosine kinase in a murine model of allergic asthma[J]. J Immunol, 2008, 180:4323-4329.