药学学报, 2016, 51(6): 985-990
引用本文:
冯静, 郭桢, 伍丽, 殷宪振, 王乐冰, 杨明, 朱卫丰, 张继稳. 基于同步辐射红外显微成像研究层层自组装包衣矫味机制[J]. 药学学报, 2016, 51(6): 985-990.
FENG Jing, GUO Zhen, WU Li, YIN Xian-zhen, WANG Le-bing, YANG Ming, ZHU Wei-feng, ZHANG Ji-wen. Taste-masking mechanism of layer-by-layer self-assembly coating investigated by synchrotron radiation-based Fourier-transform infrared spectromicroscopy[J]. Acta Pharmaceutica Sinica, 2016, 51(6): 985-990.

基于同步辐射红外显微成像研究层层自组装包衣矫味机制
冯静1,2, 郭桢2, 伍丽2, 殷宪振2, 王乐冰1,2, 杨明1, 朱卫丰1, 张继稳1,2
1. 江西中医药大学, 江西 南昌 330004;
2. 中国科学院上海药物研究所, 上海 201210
摘要:
熔融法制备布洛芬脂质微丸具有一定的掩味效果。本文通过壳聚糖作为阳离子、明胶为阴离子的离子交互作用,进行层层自组装(layer-by-layer self-assembly, LBL)包衣,以强化矫味效果。以释放特征表征包衣后脂质微丸的矫味效果,证明层层自组装包衣显著抑制了模型药物布洛芬在1 min内的释放速度;用同步辐射红外(synchrotron radiation-based Fourier-transform infrared spectromicroscopy, SR-FTIR)显微成像技术,对包衣后微丸横切面及包衣膜的组成物质分布进行研究。SR-FTIR单谱扫描获取各组分的特征吸收峰,显示脂质微丸表面存在膜组成物质的吸收峰; SR-FTIR的图谱绘制(SR-FTIR mapping)得到微丸横切面的积分分布图和比值谱图,显示药物及膜组成物质的吸收分布,证实在微丸表面包裹有壳聚糖和明胶,并形成了膜结构;另外,单独多次包裹明胶、壳聚糖的微丸表面的比值谱图中均未出现明胶、壳聚糖的特征吸收,进一步证实阴阳离子的静电吸附作用对于包衣膜的形成具有重要作用。本研究建立了包衣膜内物质存在与分布的SR-FTIR成像技术和方法,为药物输送系统中膜的研究提供一个新的有效工具。
关键词:    矫味      阴阳离子作用      成膜      同步辐射红外      物质分布      布洛芬     
Taste-masking mechanism of layer-by-layer self-assembly coating investigated by synchrotron radiation-based Fourier-transform infrared spectromicroscopy
FENG Jing1,2, GUO Zhen2, WU Li2, YIN Xian-zhen2, WANG Le-bing1,2, YANG Ming1, ZHU Wei-feng1, ZHANG Ji-wen1,2
1. Jiangxi University of Chinese Medicine, Nanchang 330004, China;
2. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
Abstract:
Ibuprofen lipid pellets prepared by melting method could mask the bitter taste of the drug to some extent. The pellets were further coated with chitosan (cationic) and gelatin (anionic) by ionic interaction layerby- layer self-assembly (LBL) coating to improve masking effects. In this paper, the release percentage of drugs in short time (1 min) was utilized as an indicator for the taste-masking, and it had confirmed the LBL coating inhibited the release of model drug of ibuprofen. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy (SR-FTIR) has been applied to investigate the material distributions on the cross section of pellets and film. Characteristic absorptions of the compositions were obtained by SR-FTIR single spectrum scanning. The distributions of the drug and materials in coated films were determined by SR-FTIR mapping. The FTIR absorptions of chitosan and gelatin on the surface of lipid pellets was examined to verify the existence of chitosan and gelatin on the surface and a film formed using SR-FTIR ratio analysis. Whilst pellets coated only by chitosan or gelatin did not show the typical absorption of chitosan or gelatin, which confirmed the effects of ionic interaction on the film forming process. In conclusion, the method of SR-FTIR established for the study of the existence and distribution of materials in coated film offers a new choice for researches on membranes/films in drug delivery systems and pharmaceutical preparations.
Key words:    taste masking    anion and cation interaction    film formation    synchrotron radiation-based Fourier-transform infrared spectromicroscopy    material distribution    ibuprofen   
收稿日期: 2015-12-16
DOI: 10.16438/j.0513-4870.2015-1163
基金项目: 国家自然科学基金资助项目(81430087);国家科技重大专项(2013ZX09402103).
通讯作者: 张继稳,Tel/Fax:86-21-20231980,E-mail:jwzhang@simm.ac.cn;朱卫丰,Tel/Fax:86-791-87118614,E-mail:zwf0322@126.com
Email: jwzhang@simm.ac.cn;zwf0322@126.com
相关功能
PDF(4796KB) Free
打印本文
0
作者相关文章
冯静  在本刊中的所有文章
郭桢  在本刊中的所有文章
伍丽  在本刊中的所有文章
殷宪振  在本刊中的所有文章
王乐冰  在本刊中的所有文章
杨明  在本刊中的所有文章
朱卫丰  在本刊中的所有文章
张继稳  在本刊中的所有文章

参考文献:
[1] Tao T. The progress and applications of flavoring and taste masking technologies in new oral dosage forms[J]. Shanghai Med Pharm J (上海医药), 2011, 32:252-255.
[2] Chen M, Cao F, Ping QN. The progress of taste masking techniques in oral solid dosage forms[J]. Prog Pharm Sci (药学进展), 2009, 33:212-217.
[3] Kaushik D, Dureja H. Recent patents and patented technology platforms for pharmaceutical taste masking[J]. Recent Pat Drug Deliv Formul, 2014, 8:37-45.
[4] Joshi S, Petereit HU. Film coatings for taste masking and moisture protection[J]. Int J Pharm, 2013, 457:395-406.
[5] Li X, Guo Z, Hao JB, et al. Synergetic taste masking of lipid coating and β-cyclodextrin inclusion[J]. Acta Pharm Sin (药学学报), 2014, 49:392-398.
[6] Paik DH, Jeong KY, Kim JH, et al. Edible HPMC films with indomethacin/HPMCP microparticles in oral delivery for taste-masking[J]. Macromol Res, 2014, 22:1156-1159.
[7] Yang JL, Shan D, Wang YL, et al. Research progress in application of functional film coatings in the oral multiple-unit pulsatile delivery system[J]. Chin J New Drugs (中国新药杂志), 2015, 24:1610-1615.
[8] Stange U, Führling C, Gieseler H. Taste masking of naproxen sodium granules by fluid-bed coating[J]. Pharm Dev Technol, 2014, 19:137-147.
[9] Hernández-Montlongo J, Nascimento VF, Murillo D, et al. Nanofilms of hyaluronan/chitosan assembled layer-by-layer:an antibacterial surface for Xylella fastidiosa[J]. Carbohydr Polym, 2016, 136:1-11.
[10] Xiang N, Lyu Y, Narsimhan G. Characterization of fish oil in water emulsion produced by layer by layer deposition of soy β-conglycinin and high methoxyl pectin[J]. Food Hydrocolloids, 2016, 52:678-689.
[11] Yu FF, Zou H, Zhong YQ. Research progress of layer-bylayer self-assembly technique in drug delivery[J]. Acta Pharm Sin (药学学报), 2012, 47:332-338.
[12] Wei X, Jie P, Zhang C, et al. Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating[J]. Carbohydr Polym, 2015, 118:119-125.
[13] Malakauskaite M, Stankeviciute Z, Niaura G, et al. Synthesis and characterization of sol-gel derived calcium hydroxyapatite thin films spin-coated on silicon substrate[J]. Ceramics Int, 2015, 41:7421-7428.
[14] Haaser M, Naelapää K, Gordon KC, et al. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging[J]. Eur J Pharm Biopharm, 2013, 85:1095-1102.
[15] Haaser M, Karrout Y, Velghe C, et al. Application of terahertz pulsed imaging to analyse film coating characteristics of sustained-release coated pellets[J]. Int J Pharm, 2013, 457:521-526.
[16] Yu P. Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science:a novel approach[J]. Br J Nutr, 2004, 92:869-885.
[17] Zhu HC, Tong YJ, Ji T. Spatial resolution measurement of synchrotron radiation infrared microspectroscopy beam line[J]. Acta Opt Sin (光学学报), 2015, 35:21-24.
[18] Hughes C, Brown MD, Clarke NW, et al. Investigating cellular responses to novel chemotherapeutics in renal cell carcinoma using SR-FTIR spectroscopy[J]. Analyst, 2012, 137:4720-4726.
[19] Wang ML, Lu XL, Yin XZ, et al. Synchrotron radiationbased Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres[J]. Acta Pharm Sin B, 2015, 5:270-276.
[20] Lin YP. Structural and character and application of chitosan[J]. Chem Eng (化学工程师), 1998, 5:33-35.
[21] Guan LB, Dan WH, Zeng R, et al. Gelatin and its application in biomedical material[J]. Mater Rev (材料导报), 2006, 20:380-383.
[22] Benbettaïeb N, Karbowiak T, Brachais CH, et al. Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to cross-link chitosan-gelatin films:a structure-function approach[J]. Eur Polym J, 2015, 67:113-127.
[23] Prata AS, Grosso CR. Production of microparticles with gelatin and chitosan[J]. Carbohydr Polym, 2015, 116:292-299.