药学学报, 2016, 51(10): 1530-1539
引用本文:
周圣斌, 王江, 柳红. 先导化合物结构优化策略(五)——降低药物hERG心脏毒性[J]. 药学学报, 2016, 51(10): 1530-1539.
ZHOU Sheng-bin, WANG Jiang, LIU Hong. Lead compound optimization strategy (5)-reducing the hERG cardiac toxicity in drug development[J]. Acta Pharmaceutica Sinica, 2016, 51(10): 1530-1539.

先导化合物结构优化策略(五)——降低药物hERG心脏毒性
周圣斌, 王江, 柳红
中国科学院上海药物研究所、受体结构与功能重点实验室, 上海 201203
摘要:
由人类果蝇相关基因(hERG)编码的钾离子通道在人类生理、病理过程中扮演着十分重要的角色。在心肌细胞中,hERG钾通道影响心脏动作电位的复极过程。近年来,一些药物因阻断该通道引起QT间期延长而被撤市。本文总结了降低与hERG相关心脏毒性的先导化合物结构优化策略,包括:降低脂溶性、降低碱性、引入羟基、引入酸性基团以及构象限制等。
关键词:    人类果蝇相关基因      先导化合物结构优化      脂溶性      碱性      构象限制      心脏毒性     
Lead compound optimization strategy (5)-reducing the hERG cardiac toxicity in drug development
ZHOU Sheng-bin, WANG Jiang, LIU Hong
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Abstract:
The potassium channel encoded by the human ether-a-go-go related gene (hERG) plays a very important role in the physiological and pathological processes in human. hERG potassium channel determines the outward currents which facilitate the repolarization of the myocardial cells. Some drugs were withdrawn from the market for the serious side effect of long QT interval and arrhythmia due to blockade of hERG channel. The strategies for lead compound optimization are to reduce inhibitory activity of hERG potassium channel and decrease cardiac toxicity. These methods include reduction of lipophilicity and basicity of amines, introduction of hydroxyl and acidic groups, and restricting conformation.
Key words:    hERG    lead compound optimization    lipophilicity    basicity    conformation restriction    cardiac toxicity   
收稿日期: 2016-03-10
DOI: 10.16438/j.0513-4870.2016-0200
基金项目: 国家杰出青年科学基金资助项目(81025017).
通讯作者: 柳红
Email: hliu@simm.ac.cn
相关功能
PDF(1252KB) Free
打印本文
0
作者相关文章
周圣斌  在本刊中的所有文章
王江  在本刊中的所有文章
柳红  在本刊中的所有文章

参考文献:
[1] Shah RR. Drug-induced QT interval prolongation:does ethnicity of the thorough QT study population matter?[J]. Br J Clin Pharmacol, 2012, 75:347-358.
[2] Bowes J, Brown AJ, Hamon J, et al. Reducing safety-related drug attrition:the use of in vitro pharmacological profiling[J]. Nat Rev Drug Discov, 2012, 11:909-922.
[3] Heijman J, Voigt N, Carlsson LG, et al. Cardiac safety assays[J]. Curr Opin Pharm, 2014, 15:16-21.
[4] Laverty HG, Benson C, Cartwright EJ, et al. How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines?[J]. Br J Pharmacol, 2011, 163:675-693.
[5] Fermini B, Fossa AA. The impact of drug-induced QT interval prolongation on drug discovery and development[J]. Nat Rev Drug Discov, 2003, 2:439-447.
[6] Vandenberg JI, Perry MD, Perrin MJ, et al. hERG K + channels:structure, function, and clinical significance[J]. Physiol Rev, 2012, 92:1393-1478.
[7] Redfern W, Carlsson L, Davis A, et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs:evidence for a provisional safety margin in drug development[J]. Cardiovasc Res, 2003, 58:32-45.
[8] Beattie KA, Luscombe C, Williams G, et al. Evaluation of an in silico cardiac safety assay:using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge[J]. J Pharmacol Toxicol Methods, 2013, 68:88-96.
[9] Obers S, Staudacher I, Ficker E, et al. Multiple mechanisms of hERG liability:K+ current inhibition, disruption of protein trafficking, and apoptosis induced by amoxapine[J]. Naunyn Schmiedebergs Arch Pharmacol, 2010, 381:385-400.
[10] Guo J, Massaeli H, Li W, et al. Identification of IKr and its trafficking disruption induced by probucol in cultured neonatal rat cardiomyocytes[J]. J Pharmacol Exp Ther, 2007, 321:911-920.
[11] Rajamani S, Eckhardt LL, Valdivia CR, et al. Drug-induced long QT syndrome:hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine[J]. Br J Pharmacol, 2006, 149:481-489.
[12] Takemasa H, Nagatomo T, Abe H, et al. Coexistence of hERG current block and disruption of protein trafficking in ketoconazole-induced long QT syndrome[J]. Br J Pharmacol, 2008, 153:439-447.
[13] Wang Q, Hu W, Lei M, et al. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple ER stressrelated chaperones during chronic oxidative stress[J]. PLoS One, 2013, 8:e84984.
[14] Hari Narayana Moorthy NS, Ramos MJ, Fernandes PA. Predictive QSAR models development and validation for human ether-a-go-go related gene (hERG) blockers using newer tools[J]. J Enzyme Inhib Med Chem, 2014, 29:317-324.
[15] Jing Y, Easter A, Peters D, et al. In silico prediction of hERG inhibition[J]. Future Med Chem, 2015, 7:571-586.
[16] Tan Y, Chen Y, You Q, et al. Predicting the potency of hERG +K channel inhibition by combining 3D-QSAR pharmacophore and 2D-QSAR models[J]. J Mol Model, 2012, 18:1023-1036.
[17] Liu LL, Lu J, Lu Y, et al. Novel Bayesian classification models for predicting compounds blocking hERG potassium channels[J]. Acta Pharmacol Sin, 2014, 35:1093-1102.
[18] Fernandez D, Ghanta A, Kauffman GW, et al. Physicochemical fe atures of the hERG channel drug binding site[J]. J Biol Chem, 2004, 279:10120-10127.
[19] Wang S, Li Y, Xu L, et al. Recent developments in computational prediction of hERG blockage[J]. Curr Top Med Chem, 2013, 13:1317-1326.
[20] Jamieson C, Moir EM, Rankovic Z, et al. Medicinal chemistry of hERG optimizations:highlights and hang-ups[J]. J Med Chem, 2006, 49:5029-5046.
[21] Kerns EH, Di L. Drug-Like Properties:Concepts, Structure Design and Methods:from ADME to Toxicity Optimization[M]. Burlington:Elsevier Inc., 2008.
[22] Sun L, Wang XJ, You QD. Process in the research on chemical modification of drugs with low hERG cardiac toxicity[J]. Chin J Pharm (中国医药工业杂志), 2011, 42:698-703.
[23] Levoin N, Labeeuw O, Calmels T, et al. Novel and highly potent histamine H 3 receptor ligands. Part 1:withdrawing of hERG activity[J]. Bioorg Med Chem Lett, 2011, 21:5378-5383.
[24] Deng Q, Lim YH, Anand R, et al. Use of molecular modeling aided design to dial out hERG liability in adenosine A2A receptor antagonists[J]. Bioorg Med Chem Lett, 2015, 25:2958-2962.
[25] Reck F, Alm R, Brassil P, et al. Novel N-linked aminopiperidine inhibitors of bacterial Topoisomerase type Ⅱ:broadspectrum antibacterial agents with reduced hERG activity[J]. J Med Chem, 2011, 54:7834-7847.
[26] Gao ZL, Hurst WJ, Czechtizky W, et al. Identification and profiling of 3,5-dimethyl-isoxazole-4-carboxylic acid[2-methyl-4-((2S,3'S)-2-methyl-[1,3']bipyrrolidinyl-1'-yl)phenyl] amide as histamine H 3 receptor antagonist for the treatment of depression[J]. Bioorg Med Chem Lett, 2013, 23:6269-6273.
[27] Cumming JG, Tucker H, Oldfield J, et al. Balancing hERG affinity and absorption in the discovery of AZD5672, an orally active CCR5 antagonist for the treatment of rheumatoid arthritis[J]. Bioorg Med Chem Lett, 2012, 22:1655-1659.
[28] Gao Z, Hurst WJ, Czechtizky W, et al. Discovery of a potent, selective, and orally bioavailable histamine H3 receptor antagonist SAR110068 for the treatment of sleep-wake disorders[J]. Bioorg Med Chem Lett, 2013, 23:6141-6145.
[29] Wuitschik G, Carreira EM, Wagner B, et al. Oxetanes in drug discovery:structural and synthetic insights[J]. J Med Chem, 2010, 53:3227-3246.
[30] Reck F, Alm RA, Brassil P, et al. Novel N-linked aminopiperidine inhibitors of bacterial Topoisomerase type Ⅱ with reduced pKa:antibacterial agents with an improved safety profile[J]. J Med Chem, 2012, 55:6916-6933.
[31] Biftu T, Qian XX, Chen P, et al. Novel tetrahydropyran analogs as dipeptidyl peptidase IV inhibitors:profile of clinical candidate (2R,3S,5R)-2-(2,5-difluorophenyl)-5-[2-(methylsulfonyl)-2,6-dihydropyrrolo[3,4-c]pyrazol-5(4H)-yl]tetrahydro-2 H-pyran-3-amine (23)[J]. Bioorg Med Chem Lett, 2013, 23:5361-5366.
[32] Rankovic Z, Cai J, Kerr J, et al. Optimisation of 2-cyanopyrimidine inhibitors of cathepsin K:improving selectivity over hERG[J]. Bioorg Med Chem Lett, 2010, 20:6237-6241.
[33] Choi YJ, Seo JH, Shin KJ. Successful reduction of off-target hERG toxicity by structural modification of a T-type calcium channel blocker[J]. Bioorg Med Chem Lett, 2014, 24:880-883.
[34] Fox BM, Natero R, Richard K, et al. Novel pyrrolidine melanin-concentrating hormone receptor 1 antagonists with reduced hERG inhibition[J]. Bioorg Med Chem Lett, 2011, 21:2460-2467.
[35] Ogiyama T, Inoue M, Honda S, et al. Discovery of novel tetrahydroisoquinoline derivatives as orally active N-type calcium channel blockers with high selectivity for hERG potassium channels (vol 22, pg 6899, 2014)[J]. Bioorg Med Chem, 2015, 23:6079.
[36] Cox CD, Coleman PJ, Breslin MJ, et al. Kinesin spindle protein (KSP) inhibitors. 9. Discovery of (2 S)-4-(2,5-difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxy methyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the treatment of taxane-refractory cancer[J]. J Med Chem, 2008, 51:4239-4252.
[37] Irie O, Kosaka T, Kishida M, et al. Overcoming hERG issues fo r brain-penetrating cathepsin S inhibitors:2-cyanopyrimidines. Part 2[J]. Bioorg Med Chem Lett, 2008, 18:5280-5284.
[38] Mihalic JT, Chen XQ, Fan PC, et al. Discovery of a novel series of melanin-concentrating hormone receptor 1 antagonists fo r the treatment of obesity[J]. Bioorg Med Chem Lett, 2011, 21:7001-7005.
[39] Mihalic JT, Fan P, Chen X, et al. Discovery of a novel melanin concentrating hormone receptor 1(MCHR1) antagonist with reduced hERG inhibition[J]. Bioorg Med Chem Lett, 2012, 22:3781-3785.
[40] Bell IM, Gallicchio SN, Abrams M, et al. 3-Aminopyrrolidinone farnesyltransferase inhibitors:design of macrocyclic compounds with improved pharmacokinetics and excellent cell potency[J]. J Med Chem, 2002, 45:2388-2409.
[41] Lian J, Wang J, Sun HF, et al. Application of methyl in drug design[J]. Acta Pharm Sin (药学学报), 2013, 48:1195-1208.
[42] Becknell NC, Dandu RR, Lyons JA, et al. Synthesis and evaluation of 4-alkoxy-[1'-cyclobutyl-spiro(3,4-dihydrobenzopyran-2,4'-piperidine)]analogues as histamine-3 receptor antagonists[J]. Bioorg Med Chem Lett, 2012, 22:186-189.
[43] Chen A, Aspiotis R, Campeau LC, et al. Renin inhibitors fo r the treatment of hypertension:design and optimization of a novel series of spirocyclic piperidines[J]. Bioorg Med Chem Lett, 2011, 21:7399-7404.
[44] Tanis VM, Bacani GM, Blevitt JM, et al. Azabenzthiazole inhibitors of leukotriene A 4 hydrolase[J]. Bioorg Med Chem Lett, 2012, 22:7504-7511.
[45] Louvel J, Carvalho JFS, Yu ZY, et al. Removal of human ether-a-go-go related gene (hERG) K + channel affinity through rigidity:a case of clofilium analogues[J]. J Med Chem, 2013, 56:9427-9440.