药学学报, 2016, 51(10): 1540-1550
李自强, 何新, 刘昌孝. 基于胃肠道生理驱动的药物溶出/透过特征同步评价技术研究进展[J]. 药学学报, 2016, 51(10): 1540-1550.
LI Zi-qiang, HE Xin, LIU Chang-xiao. Recent advances in drug dissolution/permeation synchronous evaluation technologies based on physiological characteristics of gastrointestinal tract[J]. Acta Pharmaceutica Sinica, 2016, 51(10): 1540-1550.

李自强1,2, 何新1, 刘昌孝1,3
1. 天津中医药大学中药学院, 天津 300193;
2. 天津中医药大学第二附属医院, 天津 300150;
3. 天津药物研究院, 释药技术与药代动力学国家重点实验室, 天津 300193
关键词:    口服药物制剂      溶出      跨膜透过      胃肠道      生物利用度      药代动力学     
Recent advances in drug dissolution/permeation synchronous evaluation technologies based on physiological characteristics of gastrointestinal tract
LI Zi-qiang1,2, HE Xin1, LIU Chang-xiao1,3
1. School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China;
2. Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China;
3. State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
Pharmacokinetic behavior of orally administrated formulations involves dissolution and absorption in the gastrointestinal tract (GIT), which is required for the systemic effects of a drug. The dissolution and subsequent penetration through the intestinal epithelia is a vital step toward in vivo bioavailability. A lot of effort has been devoted to the study of physiological characteristics of GIT by means of in vitro dissolution methods or in vitro permeation methods. Moreover, drug dissolution/permeation synchronous evaluation technology could be employed to predict the process of drug dissolution and absorption by the combination of dissolution apparatus and permeation apparatus. Better prediction tools are priority in the critical path initiative of US Food and Drug Administration. The studies and applications of the drug dissolution/permeation synchronous evaluation technology are attracting more and more attention each year. However, there is no systematic review on the theoretical basis and the recent development. Therefore, in this review, we will give an overview on the physiological basis and theoretical basis of the drug dissolution/permeation synchronous evaluation technology, as well as their recent advances of this kind of equipments at home and abroad. Moreover, we have also compared their advantages and disadvantages, and the applicable scopes. With hope that the critical path study will promote the development of innovative drug research and development, and improve the druggability.
Key words:    orally administrated formulation    dissolution    permeation    gastrointestinal tract    bioavailability    pharmacokinetic   
收稿日期: 2016-05-04
DOI: 10.16438/j.0513-4870.2016-0427
基金项目: 国家自然科学基金资助项目(81303141);天津市科技支撑重点项目(16YFZCSY00440);教育部创新团队发展计划资助项目(IRT_14R41).
通讯作者: 何新
Email: hexintn@163.com
PDF(4605KB) Free
李自强  在本刊中的所有文章
何新  在本刊中的所有文章
刘昌孝  在本刊中的所有文章

[1] Li ZQ, He X. Physiologically based in vitro models to predict the oral dissolution and absorption of a solid drug delivery system[J]. Curr Drug Metab, 2015, 16:777-806.
[2] Aurélie G, Lucie EM, Valérie L, et al. Relevance and challenges in modeling human gastric and small intestinal digestion[J]. Trends Biotechnol, 2012, 30:591-600.
[3] Garbacz G, Klein S. Dissolution testing of oral modifiedrelease dosage forms[J]. J Pharm Pharmacol, 2012, 64:944-968.
[4] McAllister M. Dynamic dissolution:a step closer to predictive dissolution testing?[J]. Mol Pharm, 2010, 7:1374-1387.
[5] Kong FB, Singh RP. A human gastric simulator (HGS) to study food digestion in human stomach[J]. J Food Sci, 2010, 75:E627-E635.
[6] Wickham M, Faulks R. Dynamic gastric model:US, 8092222[P]. 2012-01-10.
[7] Ramasamy US, Venema K, Gruppen H, et al. The fate of chicory root pulp polysaccharides during fermentation in the TNO in vitro model of the colon (TIM-2)[J]. Bioact Carbohydr Dietary Fibre, 2014, 4:48-57.
[8] Blanquet-Diot S, Denis S, Chalancon S, et al. Use of artificial digestive systems to investigate the biopharmaceutical factors influencing the survival of probiotic yeast during gastrointestinal transit in humans[J]. Pharm Res, 2012, 29:1444-1453.
[9] Vatier J, Malikova SE, Vitre MT, et al. An artificial stomachdu odenum model for the in vitro evaluation of antacids[J]. Aliment Pharmacol Ther, 1992, 6:447-458.
[10] Parikh RK, Parikh DC, Delvadia RR, et al. A novel multicompartment dissolution apparatus for evaluation of floating dosage form containing poorly soluble weakly basic drug[J]. Dissol Technol, 2006, 13:14-19.
[11] Terpend K, Possemiers S, Daguet D, et al. Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME)[J]. Environ Microbiol Rep, 2013, 5:595-603.
[12] Ribnicky DM, Roopchand DE, Oren A, et al. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1)[J]. Food Chem, 2014, 142:349-357.
[13] Klein S, Buchanan NL, Buchanan CM. Miniaturized transfer models to predict the precipitation of poorly soluble weak bases upon entry into the small intestine[J]. AAPS PharmSciTech, 2012, 13:1230-1235.
[14] Bogataj M, Cof G, Mrhar A. Peristaltic movement simulating stirring device for dissolution testing:WO, 2010014046[P]. 2010-04-02.
[15] Garbacz G, Cadé D, Benameur H, et al. Bio-relevant dissolution testing of hard capsules prepared from different shell materials using the dynamic open flow through test apparatus[J]. Eur J Pharm Sci, 2014, 57:264-272.
[16] FDA. Challenge and opportunity on the critical path to new medicinal products[EB/OL]. 2004-03-16. http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.pdf.
[17] Parekh A, Buckman-Garner S, Mccune S, et al. Catalyzing the critical path initiative:FDA's progress in drug development activities[J]. Clin Pharmacol Ther, 2014, 97:221-233.
[18] Janet W. Paving the critical path of drug development:the CDER perspective[J]. Nat Rev Drug Discov, 2014, 13:783-784.
[19] Yuen KH. The transit of dosage forms through the small intestine[J].Int J Pharm,2010,395:9-16.
[20] McConnell EL,Fadda HM,Basit AW.Gut instincts:explorations in intestinal physiology and drug delivery[J]. Int J Pharm,2008,364:213-226.
[21] Yu LX,Lipka E,Crison JR,et al.Transport approaches to the biopharmaceutical design of oral drug delivery systems:prediction of intestinal absorption[J].Adv Drug Deliv Rev, 1996,19:359-376.
[22] Agoram B,Woltosz WS,Bolger MB.Predicting the impact of physiological and biochemical processes on oral drug bioavailability[J].Adv Drug Deliv Rev,2001,50:S41-S67.
[23] Kadono K,Akabane T,Tabata K,et al.Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor[J].Drug Metab Dispos,2010,38:1230-1237.
[24] Li D,Sheng L,Li Y.Methods for the study of drug transporters[J].Acta Pharm Sin (药学学报),2014,49:963-970.
[25] Wang L,Liu KX.Alteration of related transporters and its application significance in common intestinal disease,liver disease,renal disease and diabetes[J].Acta Pharm Sin (药学学报),2015,50:127-132.
[26] Siepmann J,Siepmann F.Mathematical modeling of drug dissolution[J].Int J Pharm,2013,453:12-24.
[27] Heikkinen AT,Korjamo T,Mönkkönen J.Modelling of drug disposition kinetics in in vitro intestinal absorption cell models[J].Basic Clin Pharmacol Toxicol,2010,106:180-188.
[28] Polli JE,Crison JR,Amidon GL,et al.Novel approach to the analysis of in vitro-in vivo relationships[J].J Pharm Sci, 1996,85:753-760.
[29] Johnson KC,Swindell AC.Guidance in the setting of drug particle size specifications to minimize variability in absorption[J].Pharm Res,1996,13:1795-1798.
[30] Takano R,Kataoka M,Yamashita S.Integrating drug permeability with dissolution profile to develop IVIVC[J]. Biopharm Drug Dispos,2012,33:354-365.
[31] Hong Y,Zhou Y,Wang J,et al.Lead compound optimization strategy (4)--improving blood-brain barrier permeability through structural modification[J].Acta Pharm Sin (药学学报),2014,49:789-799.
[32] Tian Y,Qu BX,Yao Y,et al.Establishment of BCRP expressed pig kidney cell line LLC-PK1/BCRP and its biological profile[J].Acta Pharm Sin (药学学报),2012, 47:1599-1604.
[33] Dibbern HW,Scholz GH.Resorption model experiments with artificial lipoid membranes.3.Model experiments for gastroenteral resorption[J].Arzneimittel-Forschung,1969, 19:1140-1145.
[34] Heppt-Becker I,Schunack W.Absorption studies with purines.Part 1:in vitro experiments with the Sartorius absorption model according to stricker[J].ArzneimittelForschung,1976,26:317-321.
[35] Koch HP.The Resotest Apparatus.A universally applicable biopharmaceutical experimental tool[J].Methods Find Exp Clin Pharmacol,1980,2:97-102.
[36] Corti G,Maestrelli F,Cirri M,et al.Development and evaluation of an in vitro method for prediction of human drug absorption.I.Assessment of artificial membrane composition[J].Eur J Pharm Sci,2006,27:346-353.
[37] Lamberti G,Cascone S,Iannaccone M,et al.In vitro simulation of drug intestinal absorption[J].Int J Pharm,2012,439:165-168.
[38] Minekus M,Havenaar R.In vitro model of an in vivo digestive tract:US,5525305[P].1996-06-11.
[39] Souliman S,Blanquet S,Beyssac E,et al.A level A in vitro/in vivo correlation in fasted and fed states using different methods:applied to solid immediate release oral dosage form[J].Eur J Pharm Sci,2006,27:72-79.
[40] Nicolaides E,Galia E,Efthymiopoulos C,et al.Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data[J].Pharm Res,1999,16:1876-1882.
[41] Patel N,Forbes B,Eskola S,et al.Use of simulated intestinal fluids with Caco-2 cells and rat ileum[J].Drug Dev Ind Pharm,2006,32:151-161.
[42] Ginski MJ,Polli JE.Prediction of dissolution-absorption relationships from a dissolution/Caco-2 system[J].Int J Pharm,1999,177:117-125.
[43] Ginski MJ,Taneja R,Polli JE.Prediction of dissolution-absorption relationships from a continuous dissolution/Caco-2 system[J].AAPS Pharm Sci,1999,1:27-38.
[44] Ingels FM,Augustijns PF.Biological,pharmaceutical,and analytical considerations with respect to the transport media used in the absorption screening system,Caco-2[J].J Pharm Sci,2003,92:1545-1558.
[45] Kataoka M,Masaoka Y,Yamazaki Y,et al.In vitro system to evaluate oral absorption of poorly water-soluble drugs:simultaneous analysis on dissolution and permeation of drugs[J].Pharm Res,2003,20:1674-1680.
[46] Kataoka M,Masaoka Y,Sakuma S,et al.Effect of food intake on the oral absorption of poorly water-soluble drugs:in vitro assessment of drug dissolution and permeation assay system[J].J Pharm Sci,2006,95:2051-2061.
[47] Buch P,Langguth P,Kataoka M,et al.IVIVC in oral absorption for fenofibrate immediate release tablets using a dissolution/permeation system[J]. J Pharm Sci, 2009, 98:2001-2009.
[48] Motz SA, Klimundová J, Schaefer UF, et al. Automated measurement of permeation and dissolution of propranolol HCl tablets using sequential injection analysis[J]. Anal Chim Acta, 2007, 581:174-180.
[49] Motz SA, Schaefer UF, Balbach S, et al. Permeability assessment for solid oral drug formulations based on Caco-2 monolayer in combination with a flow through dissolution cell[J]. Eur J Pharm Biopharm, 2007, 66:286-295.
[50] Muendoerfer M, Schaefer UF, Koenig P, et al. Online monitoring of transepithelial electrical resistance (TEER) in an apparatus for combined dissolution and permeation testing[J]. Int J Pharm, 2010, 392:134-140.
[51] Kobayashi M, Sada N, Sugawara M, et al. Development of a new system for prediction of drug absorption that takes into account drug dissolution and pH change in the gastrointestinal tract[J]. Int J Pharm, 2001, 221:87-94.
[52] He X, Sugawara M, Kobayashi M, et al. An in vitro system for prediction of oral absorption of relatively watersoluble drugs and ester prodrugs[J]. Int J Pharm, 2003, 263:35-44.
[53] He X, Kadomura S, Takekuma Y, et al. A new system for the prediction of drug absorption using a pH-controlled Caco-2 model:evaluation of pH-dependent soluble drug absorption and pH-related changes in absorption[J]. J Pharm Sci, 2004, 93:71-77.
[54] He X, Sugawara M, Takekuma Y, et al. Absorption of ester prodrugs in Caco-2 and rat intestine models[J]. Antimicrob Agents Chemother, 2004, 48:2604-2609.
[55] Sugawara M, Kadomura S, He X, et al. The use of an in vitro dissolution and absorption system to evaluate oral absorption of two weak bases in pH-independent controlled-release fo rmulations[J]. Eur J Pharm Sci, 2005, 26:1-8.
[56] Zhu CC, Li ZQ, Liu ZD, et al. Evaluation on the release discipline of baicalin and its three solid preparations using a drug dissolution simulating system[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2010, 15:11-20.
[57] Li ZQ, Liu ZD, Gu H, et al. Evaluation on the release discipline of salvianolic acid B sustained-release tablets using a drug dissolution and absorption simulating system[J]. Drug Evaluat Res (药物评价研究), 2010, 33:367-373.
[58] Li ZQ, He X, Gao XM, et al. Study on dissolution and absorption of four dosage forms of isosorbide mononitrate:level A in vitro-in vivo correlation[J]. Eur J Pharm Biopharm, 2011, 79:364-371.
[59] Liu WJ, He X, Li ZQ, et al. Development of a bionic system fo r the simultaneous prediction of the release/absorption characteristics of enteric-coated formulations[J]. Pharm Res, 2013, 30:596-605.
[60] Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption:a review of fundamentals[J]. J Clin Pharmacol, 2002, 42:620-643.
[61] Reppas C, Vertzoni M. Biorelevant in-vitro performance testing of orally administered dosage forms[J]. J Pharm Pharmacol, 2012, 64:919-930.
[62] Gobeau N, Stringer R, De Buck S, et al. Evaluation of the GastroPlusTM advanced compartmental and transit (ACAT) model in early discovery[J]. Pharm Res, 2016, 33:2126-2139.
1.陈 鹰 李 高 黄建耿 王瑞华 刘 宏 汤 韧.自微乳化技术与固体分散技术在改善长春西汀溶出度和生物利用度上的比较(英文)[J]. 药学学报, 2009,44(6): 658-666
2.徐晓燕;张蕊;袁桂艳;王本杰;刘晓燕;郭瑞臣.HPLC-MS/MS法测定人体色甘酸钠血浆浓度及其药代动力学研究[J]. 药学学报, 2008,43(9): 942-945
3.王文刚;恽榴红;王睿;付桂英;刘泽源.非洛地平-美托洛尔复方经皮给药系统的制备及其兔体内生物利用度[J]. 药学学报, 2007,42(11): 1206-1214
4.邵凤;王广基;孙建国;谢海棠;张荣;诸晓燕.雷公藤内酯醇在Beagle犬体内的药代动力学[J]. 药学学报, 2007,42(1): 61-65
5.肖衍宇;宋赟梅;陈志鹏;平其能.水飞蓟宾磷脂复合物的制备与大鼠生物利用度的研究[J]. 药学学报, 2005,40(7): 611-617
6.肖衍宇;宋赟梅;陈志鹏;平其能.水飞蓟素前体脂质体的制备和大鼠药代动力学的研究水飞蓟素前体脂质体的制备和大鼠药代动力学的研究[J]. 药学学报, 2005,40(8): 758-763
7.全东琴;徐贵霞.全反式维甲酸自乳化给药系统的体内外评价[J]. 药学学报, 2005,40(1): 76-79
8.张援;许东晖;马争;陈颖;赵君军;许实波.格列美脲凝胶骨架控释贴剂的制备及体内外评价[J]. 药学学报, 2004,39(8): 640-644
9.郭涛;;郑春丽;宋洪涛;隋因;党大胜;孙学惠.双氯芬酸钠脉冲控释微丸的研究[J]. 药学学报, 2003,38(9): 707-710
10.宋洪涛;郭涛;张汝华;马燕;李铣;毕开顺.麝香保心pH依赖型梯度释药微丸的研究[J]. 药学学报, 2002,37(10): 812-817
11.张正;陈宝玲;王珂;黄一玲;方树青;顾德良;方丽;韩少军.普罗布考包合物胶囊在家犬体内的药代动力学与相对生物利用度[J]. 药学学报, 2002,37(3): 210-213
12.周梅华;郁韵秋;段更利;程务本;许长江;刘骁.克林沙星在大鼠体内的药代动力学和生物利用度[J]. 药学学报, 2001,36(2): 134-136
13.马越鸣;裘福荣;冒国光;曾照宏;陈波;孙华.氯化钾泡腾片人体相对生物利用度研究[J]. 药学学报, 2001,36(9): 699-702
14.刘锦业;何同胜;杜冠华.固体分散无环鸟苷胶囊剂溶出度及人体内生物利用度[J]. 药学学报, 2000,35(4): 301-304
15.王建新;赵立霞;秦永平;陈得光4;李铜铃4;李芚4.硫酸沙丁胺醇缓释胶囊人体药代动力学和生物利用度[J]. 药学学报, 2000,35(9): 683-687
16.高连用;李全胜;顾以保;刘昌孝.酮洛芬缓释片与常释片在健康受试者的药代动力学及生物利用度[J]. 药学学报, 1999,34(7): 547-551
17.潘卫三;吴涛;尹飞;陈济民;张汝华;王新.硫酸沙丁胺醇渗透泵控释片的人体药代动力学与生物利用度[J]. 药学学报, 1999,34(12): 933-936
18.张强;黄晓芳;汲萍;傅利辉;严宝霞;魏树礼.多剂量口服5-单硝酸异山梨酯缓释片及普通片的药代动力学和生物利用度研究[J]. 药学学报, 1998,33(5): 373-378
19.马晓红;许逸;刘天培.高效液相色谱法测定血清中依普拉芬浓度及在人体的药代动力学研究[J]. 药学学报, 1997,32(6): 470-472
20.陈秋潮;杨春芹;赵彩虹;马永贵;李雪宁;陈伟力.格列吡嗪胶囊的药代动力学及生物利用度研究[J]. 药学学报, 1995,30(6): 476-480
21.李章万;郭平;叶利民;洪诤;王浴生.HPLC柱切换法血浆直接进样测定氟康唑[J]. 药学学报, 1994,29(10): 773-777
22.颜小锋;丁德云;刘锐军.尼莫地平片剂生物利用度和健康人药代动力学研究[J]. 药学学报, 1993,28(1): 45-49
23.郭建兰;经广纬;曹德善;李瑶卿;何海燕;林力行;李忠.盐酸维拉帕米渗透泵片溶出度与人体生物利用度研究[J]. 药学学报, 1993,28(9): 714-720
24.邵俊;毛凤斐;屠锡德.增效联磺片的体外溶出度和体内生物利用度[J]. 药学学报, 1992,27(5): 375-380
25.陆彬;贺英菊;郭平;叶利民.法莫替丁片的溶出度与生物利用度[J]. 药学学报, 1992,27(4): 303-307
26.孟娟如.大白鼠颈静脉及肝门静脉持久性导管术及其应用[J]. 药学学报, 1987,22(5): 326-329
27.张玉琥;刘国华;平其能.控释吲(口朶)美辛栓剂的溶出度和正常人药代动力学研究[J]. 药学学报, 1987,22(8): 580-585
28.楼雅卿;张宏;曹霞;陈孟来.磷酸川芎嗪在狗和大鼠的药代动力学和体内命运[J]. 药学学报, 1986,21(7): 481-487
29.冯正;江乃雄;王翠英;张炜.抗疟药咯萘啶在兔体内的药代动力学[J]. 药学学报, 1986,21(11): 801-805
30.李端;杨香媛;王锦平;王永铭;单婕;张红露;白耀洲;陶小华;莫善源.消炎痛缓释胶囊的生物利用度研究[J]. 药学学报, 1985,20(5): 387-391
31.楼雅卿;郭维芳;王文玲;付贻柯.应用高压液相色谱法研究苯妥英钠的临床药代动力学及生物利用度[J]. 药学学报, 1983,18(7): 487-490