药学学报, 2016, 51(10): 1564-1571
甘文强, 高林, 黄永刚, 张瑞萍, 杨柳, 王青春, 范佳文, 朱海波. 脉抒抑制ApoE-/-小鼠动脉粥样硬化形成的作用[J]. 药学学报, 2016, 51(10): 1564-1571.
GAN Wen-qiang, GAO Lin, HUANG Yong-gang, ZHANG Rui-ping, YANG Liu, WANG Qing-chun, FAN Jia-wen, ZHU Hai-bo. Suppression effect of MaiShu on formation of atherosclerotic plaque of apolipoprotein E knock-out mice[J]. Acta Pharmaceutica Sinica, 2016, 51(10): 1564-1571.

甘文强1, 高林2, 黄永刚2, 张瑞萍1, 杨柳1, 王青春1, 范佳文1, 朱海波1
1. 中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 新药作用机制研究与药效评价北京市重点实验室, 北京 100050;
2. 青海睿元药物研究所有限责任公司, 青海 西宁 810003
本文研究由山楂、沙棘和枸杞三味中药为主,并添加多种植物甾醇(β-谷甾醇、豆甾醇和菜油甾醇等)、β-葡聚糖和番茄红素等制备而成的天然药物组方脉抒对高脂膳食诱导ApoE-/-(载脂蛋白E基因敲除)小鼠动脉粥样硬化斑块形成的影响。利用紫外液相色谱-质谱联用(LC-UV-MS)技术对脉抒的化学成分进行分析;采用特制高脂喂养建立ApoE-/-动脉粥样硬化小鼠模型,观察口服不同剂量(1、2和4 g·kg-1·d-1)脉抒10周后ApoE-/-小鼠血脂水平(总胆固醇、甘油三酯及高密度脂蛋白胆固醇)的变化;分离主动脉全长,采用油红O染色,观察主动脉全长斑块形成;对主动脉根部冰冻切片分别采用油红O及天狼星红染色,观察主动脉根部斑块形成;采用动态可视化微血管观察系统,观察小鼠体内白细胞-内皮细胞黏附作用;用免疫组化方法检测主动脉根部斑块中巨噬细胞标记物CD68表达变化,观察巨噬细胞在斑块中的聚集情况。结果显示,脉抒中含有黄酮类(9.5%)、多糖类(8.9%)和植物甾醇类化合物(23.8%)等成分;模型对照组血清血脂水平较空白对照组明显升高,脉抒给药组在4 g·kg-1剂量下血清总胆固醇水平较模型组显著降低,在1、2和4 g·kg-1剂量下血清甘油三酯含量、斑块与内皮面积占比均较模型组显著降低;2和4 g·kg-1剂量给药组主动脉根部斑块面积值、微循环中白细胞滚动速率较模型对照组显著改善;1和2 g·kg-1给药组斑块胶原纤维含量明显较高,动脉根部斑块中巨噬细胞数量明显减少。上述结果提示,脉抒能降低高脂诱发动脉粥样硬化模型小鼠血脂水平,改善小鼠微循环中白细胞与内皮细胞黏附状况,说明脉抒有效抑制动脉粥样硬化模型小鼠主动脉中斑块形成的作用,可能与其减少斑块内巨噬细胞数量有关。
关键词:    脉抒      ApoE-/-小鼠      动脉粥样硬化      巨噬细胞      白细胞黏附     
Suppression effect of MaiShu on formation of atherosclerotic plaque of apolipoprotein E knock-out mice
GAN Wen-qiang1, GAO Lin2, HUANG Yong-gang2, ZHANG Rui-ping1, YANG Liu1, WANG Qing-chun1, FAN Jia-wen1, ZHU Hai-bo1
1. Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. Qinghai Ruiyuan Pharmaceutical Research Institute Co. LTD, Xining 810003, China
The research aimed to investigate the suppression effect of MaiShu which contains hawthorn, hippophae, medlar, phytosterols (β-sitosterol, stigmasterol and campesterol), β-glucan and lycopeneon formation of atherosclerotic plaque in apolipoprotein E knock-out (ApoE-/-) mice. Liquid chromatography-ultraviolet-mass spectrometry (LC-UV-MC) methods were used to analyze the main chemical composition of MaiShu.Atherosclerotic mice models were established by high-fat diet. The mice were administrated with MaiShu (1, 2, 4 g·kg-1·d-1) or other contrast materials by intragastric route for 10 weeks continuously. At the end of administration, the blood of mice was collected for tests of the serum total cholesterol (TC), total triglyceride (TG) and high density lipoprotein cholesterol (HDL-C) level. Atherosclerotic lesions in aorta and aortic root were assessed by calculating the relative area of lesions (oil red O stained). Intravital fluorescence microscopic system was used to evaluate the leukocyte-endothelial adhesion in mesenteric artery of mice by detecting the rolling velocity of white blood cells (WBC). Collagenous fibers and macrophages in lesions were detected by sirius red staining and immunological histological chemistry to evaluate the atherosclerotic plaque stability. Results showed that MaiShu contains various flavonoids (9.5%), phytosterols (23.8%) and polysaccharides (8.9%). The serum lipid level of model animals was significantly higher than the control animals. Serum TC level was decreased by MaiShu (4 g·kg-1, P<0.001) compared to the untreated model. Serum TG level was reduced by MaiShu (1, 2, 4 g·kg-1) compared to model (P<0.01). Area of atherosclerotic lesions in aorta and aortic root was decreased in MaiShu group (aorta:1 g·kg-1, P<0.05; 2 g·kg-1, P<0.01; 4 g·kg-1, P<0.001; aortic root:2, 4 g·kg-1, P<0.01). Rolling velocity of white blood cells of MaiShu (4 g·kg-1, P<0.001) group was increased over the untreated model. Collagenous fibers in lesions were observationally increased by MaiShu (1, 2 g·kg-1) and macrophages were decreased (2, 4 g·kg-1) compared to model. These results demonstrate that MaiShu can obviously decrease the serum lipid levels and the risk of leukocyte-endothelial adhesion in ApoE-/- mice. The effect of MaiShu may be associated with the decrease of macrophages in plaque.
Key words:    MaiShu    ApoE-/- mice    atherosclerosis    macrophage    leukocyte adhesion   
收稿日期: 2016-06-01
DOI: 10.16438/j.0513-4870.2016-0528
基金项目: 国家“重大新药创制”科技重大专项资助项目(2012ZX09301002-004).
通讯作者: 朱海波
Email: zhuhaibo@imm.ac.cn
PDF(17860KB) Free
甘文强  在本刊中的所有文章
高林  在本刊中的所有文章
黄永刚  在本刊中的所有文章
张瑞萍  在本刊中的所有文章
杨柳  在本刊中的所有文章
王青春  在本刊中的所有文章
范佳文  在本刊中的所有文章
朱海波  在本刊中的所有文章

[1] Moghadasian MH, Frohlich JJ. Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis:clinical and experimental evidence[J]. Am J Med, 1999, 107:588-594.
[2] Santas J, Codony R, Rafecas M. Phytosterols:beneficial effects[M]//Ramawat KG, Mérillon JM. Natural Products. Berlin:Springer, 2013:3437-3464.
[3] Dhankhar J. Cardioprotective effects of phytosterols[J]. Int J Pharm Sci Res, 2013, 4:590-596.
[4] Suomela JP, Ahotupa M, Yang BR, et al. Absorption of flavonols derived from sea buckthorn (Hippophaёrhamnoides L.) and their effect on emerging risk factors for cardiovascular disease in humans[J]. J Agric Food Chem, 2006, 54:7364-7369.
[5] Yu DH, Bao SR, Yu CM, et al. Reserch progress of pharmacological action of hawthorn leaves flavonoids[J]. J Liaoning Univ Tradit Chin Med (辽宁中医药大学学报), 2013, 15:174-177.
[6] Jiang QR, Yao CL, Li GZ. Effects of lyceum barbarum polysaccharides on blood lipid and oxidative stress of aorta in hyperlipemia rat[J]. Ningxia Med J (宁夏医学杂志), 2010, 32:504-506.
[7] Hollman PCH, Katan MB. Dietary flavonoids:intake, health effects and bioavailability[J]. Food Chem Toxicol, 1999, 37:937-942.
[8] Ma R, Wu SB. Advances in pharmacological effect and mechanism of flavonoid in traditional Chinese medicine[J]. Chin J Pharmacovigilance (中国药物警戒), 2013, 10:286-290.
[9] Williams JK, Sukhova GK, Herrington DM, et al. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys[J]. J Am Coll Cardiol, 1998, 31:684-691.
[10] Tripathy D, Mohanty P, Dhindsa ST, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects[J]. Diabetes, 2003, 52:2882-2887.
[11] Jia YY, Hoang MH, Jun HJ, et al. Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes[J]. Bioorg Med Chem Lett, 2013, 23:4185-4190.
[12] Dong LH, Zhang RF, Su DX, et al. Research progress on the hypolipidemic effects of flavonoids and the related molecular mechanism[J]. Chin J Cell Biol (中国细胞生物学学报), 2016, 38:81-90.
[13] Szmitko PE, Verma S. C-reactive protein and the metabolic syndrome:useful addition to the cardiovascular risk profile[J]. J Cardiometab Syndr, 2006, 1:66-69.
[14] Ross R. Atherosclerosis-an inflamematory disease[J]. New Engl J Med, 1999, 340:115-126.
[15] Hansson G. Atherosclerosis--an immune disease:the anitschkov lecture 2007[J]. Atherosclerosis, 2008, 202:2-10.
[16] Jaipersad AS, Lip GYH, Silverman S, et al. The role of monocytes in angiogenesis and atherosclerosis[J]. J Am Coll Cardiol, 2014, 63:1-11.
[17] Gai YT, Shu Q, Chen CX, et al. Anti-atherosclerosis role of Noleoylethanolamine in CB 2[J]. Acta Pharm Sin (药学学报), 2014, 49:316-321.
[18] Zheng SG, Zhao MQ, Ren YN, et al. Effects of crocetin on VCAM-1 expression in human umbilical vein endothelial cells and monocyte-endothelial cell adhesion[J]. Acta Pharm Sin (药学学报), 2015, 50:34-38.
[19] Guan X, Yao BL. Research progress of pharmacological actions of chalcones[J]. Guangzhou Chem Ind (广州化工), 2012, 40:23-25, 29.
[20] Pateras I, Giaginis C, Tsigris C, et al. NF-κB signaling at the crossroads of inflammation and atherogenesis:searching for new therapeutic links[J]. Exp Opin Therapeut Targets, 2014, 18:1089-1101.
1.陈文娜, 郭胜男, 王俊岩, 贾连群, 李大勇, 田英.下肢动脉硬化闭塞症患者股动脉粥样硬化斑块中巨噬细胞极化表型与自噬信号相关性的研究[J]. 药学学报, 2016,51(1): 68-74