药学学报, 2017, 52(1): 1-7
引用本文:
周权, 余露山, 曾苏. 基于药物代谢酶和转运体基因组学的药物精准治疗[J]. 药学学报, 2017, 52(1): 1-7.
ZHOU Quan, YU Lu-shan, ZENG Su. Personalized dosing from perspective of pharmacogenomics of drug metabolizing enzymes and transporters[J]. Acta Pharmaceutica Sinica, 2017, 52(1): 1-7.

基于药物代谢酶和转运体基因组学的药物精准治疗
周权1, 余露山2, 曾苏2
1. 浙江大学医学院附属第二医院, 浙江 杭州 310009;
2. 浙江大学药学院药物代谢和药物分析研究所, 浙江省抗肿瘤药物研究重点实验室, 浙江 杭州 310058
摘要:
药物基因组学旨在研究药物效应(药物体内过程、安全性和有效性)的个体差异与基因变异(药物代谢酶、转运体和药物靶点)之间的关系。药物精准治疗是以药物基因组学为基础,结合患者的其他个体情况实施量体裁衣式的药物治疗。本文总结了基于药物代谢酶和转运体基因组学的药物精准治疗的临床应用进展,提出应重点关注的科学问题(包括多基因和非遗传因素对药物效应的影响、治疗药物监测与药物基因组学检测的整合),同时提出临床应用中面临的瓶颈问题及其相关对策。
关键词:    药物代谢酶      转运体      精准治疗      药物基因组学      组合药物基因组学      表型转换     
Personalized dosing from perspective of pharmacogenomics of drug metabolizing enzymes and transporters
ZHOU Quan1, YU Lu-shan2, ZENG Su2
1. The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
2. Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Abstract:
Pharmacogenomics is defined as research into the relationship between inherited genetic variations in drug metabolizing enzymes, transporters and targets and individual variations in person's response to drugs (fate of drug in human body, safety and efficacy). Personalized dosing is pharmacogenomics-based therapeutic regimen tailored to other individual characteristics. This article summarizes the progress in clinical application of personalized dosing from the perspective of pharmacogenomics of drug metabolizing enzymes and transporters, and proposes to draw attention to key scientific issues (e.g., the effect of multi-genes and non-genetic factors on drug effects, the integration of therapeutic drug monitoring and pharmacogenomics); meanwhile, bottle necks in the clinical application and corresponding strategies are proposed.
Key words:    drug metabolism    transporter    personalized dosing    pharmacogenomics    combinatorial pharmacogenomics    phenoconversio   
收稿日期: 2016-06-08
DOI: 10.16438/j.0513-4870.2016-0562
基金项目: 国家自然科学基金资助项目(81373488).
通讯作者: 周权,Tel:86-571-88208407,Fax:86-571-88208405,E-mail:zhouquan142602@zju.edu.cn
Email: zhouquan142602@zju.edu.cn
相关功能
PDF(326KB) Free
打印本文
0
作者相关文章
周权  在本刊中的所有文章
余露山  在本刊中的所有文章
曾苏  在本刊中的所有文章

参考文献:
[1] Zhou Q, Zeng S. Drug metabolism, transport and clinical implications[M]//Jiang XH. Clinical Pharmacokinetics (临床药动学). Beijing:Higher Education Press, 2007, 62-105.
[2] Clinical Pharmacogenetics Implementation Consortium. Dosing Guidelines-CPIC[S/OL].[2016-05-06]. https://www.pharmgkb.org/view/dosing-guidelines.do?source=CPIC#.
[3] FDA. Table of Pharmacogenomic Biomarkers in Drug Labeling[EB/OL]. 2015[2016-05-06]. http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm.
[4] Huang FH, Xiao HL. FDA's requirements for including pharmacogenomic information in durg labeling[J]. Drug Eval Res (药物评价研究), 2014, 37:201-206.
[5] Wang B, Canestaro WJ, Choudhry NK. Clinical evidence supporting pharmacogenomic biomarker testing provided in US Food and Drug Administration drug labels[J]. JAMA Intern Med, 2014, 174:1938-1944.
[6] Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus:a systematic review and meta-analysis of observational studies[J]. Pharmacogenomics J, 2015, 15:38-48.
[7] Zhu HJ, Yuan SH, Fang Y, et al. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients:a meta-analysis[J]. Pharmacogenomics J, 2011, 11:237-246.
[8] Jung JA, Lim HS. Association between CYP2D6 genotypes and the clinical outcomes of adjuvant tamoxifen for breast cancer:a meta-analysis[J]. Pharmacogenomics, 2014, 15:49-60.
[9] De Iuliis F, Salerno G, Taglieri L, et al. Are pharmacogenomic biomarkers an effective tool to predict taxane toxicity and outcome in breast cancer patients? Literature review[J]. Cancer Chemother Pharmacol, 2015, 76:679-690.
[10] Yin JY, Huang Q, Zhao YC, et al. Meta-analysis on pharmacogenetics of platinum-based chemotherapy in non small cell lung cancer (NSCLC) patients[J]. PLoS One, 2012, 7:e38150.
[11] He HR, Chen SY, You HS, et al. Association between methylenetetrahydrofolate reductase polymorphisms and the relapse of acute lymphoblastic leukemia:a meta-analysis[J]. Pharmacogenomics J, 2014, 14:432-438.
[12] Meulendijks D, Henricks LM, Sonke GS, et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity:a systematic review and meta-analysis of individual patient data[J]. Lancet Oncol, 2015, 16:1639-1650.
[13] Luo JQ, He FZ, Wang ZM, et al. SLCO1B1 variants and angiotensin converting enzyme inhibitor (enalapril)-induced cough:a pharmacogenetic study[J]. Sci Rep, 2015, 5:17253.
[14] de Keyser CE, Peters BJ, Becker ML, et al. The SLCO1B1 c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study[J]. Pharmacogenet Genomics, 2014, 24:43-51.
[15] Zheng Q, Wu H, Yu Q, et al. ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia patients:a systematic review and meta-analysis[J]. Pharmacogenomics J, 2015, 15:127-134.
[16] Wen CC, Yee SW, Liang X, et al. Genome-wide association study identifies ABCG2(BCRP) as an allopurinol transporter and a determinant of drug response[J]. Clin Pharmacol Ther, 2015, 97:518-525.
[17] Zhou Q, Ruan ZR, Yuan H, et al. CYP2C9*3(1075A>C), MDR1 G2677T/A and MDR1 C3435T are determinants of inter-subject variability in fluvastatin pharmacokinetics in healthy Chinese volunteers[J]. Arzneimittelforschung, 2012, 62:519-524.
[18] Zhou Q, Ruan ZR, Yuan H, et al. ABCB1 gene polymorphisms,ABCB1 haplotypes and ABCG2 c.421c>A are determinants of inter-subject variability in rosuvastatin pharmacokinetics[J]. Pharmazie, 2013, 68:129-134.
[19] Altar CA, Carhart JM, Allen JD, et al. Clinical validity:combinatorial pharmacogenomics predicts antidepressant responses and healthcare utilizations better than single gene phenotypes[J]. Pharmacogenomics J, 2015, 15:443-451.
[20] Kim HS, Chang K, Koh YS, et al. CYP2C19 poor metabolizer is associated with clinical outcome of clopidogrel therapy in acute myocardial infarction but not stable angina[J]. Circ Cardiovasc Genet, 2013, 6:514-521.
[21] Zhou Q, Chen QX, Ruan ZR, et al. CYP2C9*3(1075A>C), ABCB1 and SLCO1B1 genetic polymorphisms and gender are determinants of inter-subject variability in pitavastatin pharmacokinetics[J]. Pharmazie, 2013, 68:187-194.
[22] van Schie RM, Wessels JA, le Cessie S, et al. Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data[J]. Eur Heart J, 2011, 32:1909-1917.
[23] Tan SL, Li Z, Song GB, et al. Development and comparison of a new personalized warfarin stable dose prediction algorithm in Chinese patients undergoing heart valve replacement[J]. Pharmazie, 2012, 67:930-937.
[24] Shah RR, Smith RL. Addressing phenoconversion:the Achilles' heel of personalized medicine[J]. Br J Clin Pharmacol, 2015, 79:222-240.
[25] Zhou Q, Yao TW, Zeng S. The advancement in phenotyping study of drug metabolism[J]. Chin J Mod Appl Pharm (中国现代应用药学), 2000, 17:423-429.
[26] Preskorn SH, Kane CP, Lobello K, et al. Cytochrome P4502D6 phenoconversion is common in patients being treated for depression:implications for personalized medicine[J]. J Clin Psychiatry, 2013, 74:614-621.
[27] Klieber M, Oberacher H, Hofstaetter S, et al. CYP2C19 phenoconversion by routinely prescribed proton pump inhibitors omeprazole and esomeprazole:clinical implications for personalized medicine[J]. J Pharmacol Exp Ther, 2015, 354:426-430.
[28] Li W, Zeng S, Yu LS, et al Pharmacokinetic drug interaction profile of omeprazole with adverse consequences and clinical risk management[J]. Ther Clin Risk Manag, 2013, 9:259-271.
[29] Owusu Obeng A, Egelund EF, Alsultan A, et al. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole:are we ready for clinical implementation of pharmacogenomics?[J]. Pharmacotherapy, 2014, 34:703-718.
[30] Chouchana L, Narjoz C, Roche D, et al. Interindividual variability in TPMT enzyme activity:10 years of experience with thiopurine pharmacogenetics and therapeutic drug monitoring[J]. Pharmacogenomics, 2014, 15:745-757.
[31] Jannetto PJ, Bratanow NC. Pain management in the 21st century:utilization of pharmacogenomics and therapeutic drug monitoring[J]. Expert Opin Drug Metab Toxicol, 2011, 7:745-752.
[32] Manvizhi S, Mathew BS, Fleming DH, et al. Combined approach with therapeutic drug monitoring and pharmacogenomics in renal transplant recipients[J]. Indian J Nephrol, 2013, 23:71-73.
[33] Plumpton CO, Roberts D, Pirmohamed M, et al. A Systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions[J]. Pharmacoeconomics, 2016, 34:771-793.
[34] Donnan JR, Ungar WJ, Mathews M, et al. A cost effectiveness analysis of thiopurine methyltransferase testing for guiding 6-mercaptopurine dosing in children with acute lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2011, 57:231-239.
[35] Baker WL, Chamberlin KW. New oral anticoagulants vs. warfarin treatment:no need for pharmacogenomics?[J]. Clin Pharmacol Ther, 2014, 96:17-19.
[36] You JH. Pharmacogenetic-guided selection of warfarin versus novel oral anticoagulants for stroke prevention in patients with atrial fibrillation:a cost-effectiveness analysis[J]. Pharmacogenet Genomics, 2014, 24:6-14.
[37] Saldivar JS, Taylor D, Sugarman EA, et al. Initial assessment of the benefits of implementing pharmacogenetics into the medical management of patients in a long-term care facility[J]. Pharmgenomics Pers Med, 2016, 9:1-6.
[38] Liu YQ, Zheng XL, Yu QQ, et al. Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin[J]. Sci Transl Med, 2016, 348:348ra97.
相关文献:
1.杨波, 王静, 丛宇婷, 胡良海, 顾景凯.基于蛋白质组学的药物代谢酶与转运体定量分析研究进展[J]. 药学学报, 2015,50(6): 668-674