药学学报, 2017, 52(1): 8-18
引用本文:
周雷, 钟大放, 陈笑艳. 非P450酶介导的药物氧化代谢研究进展[J]. 药学学报, 2017, 52(1): 8-18.
ZHOU Lei, ZHONG Da-fang, CHEN Xiao-yan. Research advances in non-P450-mediated drug oxidative metabolism[J]. Acta Pharmaceutica Sinica, 2017, 52(1): 8-18.

非P450酶介导的药物氧化代谢研究进展
周雷, 钟大放, 陈笑艳
中国科学院上海药物研究所, 上海 201203
摘要:
常见的催化药物氧化代谢的非P450酶包括黄素单氧化酶(FMO)、单胺氧化酶(MAO)、醛氧化酶(AO)、黄嘌呤氧化酶(XO)、乙醇脱氢酶(ADH)和乙醛脱氢酶(ALDH)。近年来,它们在药物氧化代谢中的作用越来越受到重视。但是,由于在药物发现和先导化合物优化过程中通常使用P450酶相关的体外模型进行代谢研究,非P450酶在药物氧化代谢中的贡献往往被低估。本文综述了以上非P450酶的催化反应类型、常见底物、基因多态性以及药物相互作用,并总结了非P450酶介导药物氧化代谢的体外研究模型及影响因素。与P450酶类似,非P450酶可以直接催化药物发生氧化代谢,产生具有治疗活性的代谢物或者毒性代谢物。这类酶也可以进一步氧化经P450酶催化产生的毒性代谢物,发挥解毒作用。与P450酶相比,大部分非P450酶(如FMO和MAO)不容易被诱导。
关键词:    黄素单氧化酶      单胺氧化酶      醛氧化酶      黄嘌呤氧化酶      乙醇脱氢酶      乙醛脱氢酶      氧化代谢     
Research advances in non-P450-mediated drug oxidative metabolism
ZHOU Lei, ZHONG Da-fang, CHEN Xiao-yan
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Abstract:
The major non-P450 enzymes involved in the oxidative metabolism of drugs are:the flavincontaining monooxygenase (FMO), the monoamine oxidase (MAO), the aldehyde oxidase (AO), the xanthine oxidase (XO), the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). In recent years, the role of non-P450 enzymes in drug oxidative metabolism has garnered increasing attention. However, the contribution of non-P450 enzymes to the drug oxidative metabolism is possibly underestimated in many cases, as most metabolism studies in drug discovery and lead optimization are conducted using in vitro test systems related to P450 enzymes. In this article, these non-P450 enzymes in terms of catalyzed reaction types, common substrates, gene polymorphism and drug interaction are reviewed, and the in vitro models and factors for non-P450-mediated oxidative metabolism are summarized. Similar to P450 enzymes, non-P450 enzymes can directly catalyze the oxidation of drugs, yielding therapeutically active metabolites or toxic metabolites. These enzymes can also oxidize the toxic metabolites, generated from P450-catalyzed reaction, to nontoxic metabolites. In general, most non-P450 enzymes (such as FMO and MAO) appear to be much less inducible than P450 enzymes.
Key words:    flavin-containing monooxygenase    monoamine oxidase    aldehyde oxidase    xanthine oxidase    alcohol dehydrogenase    aldehyde dehydrogenase    oxidative metabolism   
收稿日期: 2016-10-17
DOI: 10.16438/j.0513-4870.2016-1005
基金项目: 国家自然科学基金资助项目(81573500).
通讯作者: 陈笑艳,Tel:86-21-50800738,E-mail:xychen@simm.ac.cn
Email: xychen@simm.ac.cn
相关功能
PDF(881KB) Free
打印本文
0
作者相关文章
周雷  在本刊中的所有文章
钟大放  在本刊中的所有文章
陈笑艳  在本刊中的所有文章

参考文献:
[1] Diamond S, Boer J, Maduskuie TP Jr., et al. Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications[J]. Drug Metab Dispos, 2010, 38:1277-1285.
[2] Akabane T, Tanaka K, Irie M, et al. Case report of extensive metabolism by aldehyde oxidase in humans:pharmacokinetics and metabolite profile of FK3453 in rats, dogs, and humans[J]. Xenobiotica, 2011, 41:372-384.
[3] Vannelli TA, Dykman A, Ortiz de Montellano PR. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase[J]. J Biol Chem, 2002, 277:12824-12829.
[4] Dixon CM, Park GR, Tarbit MH. Characterization of the enzyme responsible for the metabolism of sumatriptan in human liver[J]. Biochem Pharmacol, 1994, 47:1253-1257.
[5] alvie D, Zientek M. Metabolism of xenobiotics by aldehyde oxidase[J]. Curr Protoc Toxicol, 2015, DOI:10.1002/0471140856.tx0441s63.
[6] Strolin Benedetti M, Whomsley R, Baltes E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics[J]. Expert Opin Drug Metab Toxicol, 2006, 2:895-921.
[7] Nishiya Y, Nakai D, Urasaki Y, et al. Stereoselective hydroxylation by CYP2C19 and oxidation by ADH4 in the in vitro metabolism of tivantinib[J]. Xenobiotica, 2016, 46:967-976.
[8] Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism[J]. Drug Metab Rev, 2004, 36:279-299.
[9] Ziegler DM. Recent studies on the structure and function of multisubstrate flavin-containing monooxygenases[J]. Annu Rev Pharmacol Toxicol, 1993, 33:179-199.
[10] Ziegler DM. Flavin-containing monooxygenases:catalytic mechanism and substrate specificities[J]. Drug Metab Rev, 1988, 19:1-32.
[11] Cashman JR. Some distinctions between flavin-containing and cytochrome P450 monooxygenases[J]. Biochem Biophys Res Commun, 2005, 338:599-604.
[12] Yanni SB, Annaert PP, Augustijns P, et al. Role of flavincontaining monooxygenase in oxidative metabolism of voriconazole by human liver microsomes[J]. Drug Metab Dispos, 2008, 36:1119-1125.
[13] Beedham C. The role of non-P450 enzymes in drug oxidation[J]. Pharm World Sci, 1997, 19:255-263.
[14] Rodriguez RJ, Acosta D Jr. Metabolism of ketoconazole and deacetylated ketoconazole by rat hepatic microsomes and flavin-containing monooxygenases[J]. Drug Metab Dispos, 1997, 25:772-777.
[15] Mani C, Hodgson E, Kupfer D. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. II. Flavin-containing monooxygenase-mediated N-oxidation[J]. Drug Metab Dispos, 1993, 21:657-661.
[16] Cashman JR, Park SB, Yang ZC, et al. Chemical, enzymatic, and human enantioselective S-oxygenation of cimetidine[J]. Drug Metab Dispos, 1993, 21:587-597.
[17] Cashman JR, Park SB, Berkman CE, et al. Role of hepatic flavin-containing monooxygenase 3 in drug and chemical metabolism in adult humans[J]. Chem Biol Interact, 1995, 96:33-46.
[18] Meng J, Zhong D, Li L, et al. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans:the oxidative ring opening of 2,3-dihydropyridin-4-one catalyzed by non-P450 enzymes[J]. Drug Metab Dispos, 2015, 43:646-659.
[19] Koukouritaki SB, Simpson P, Yeung CK, et al. Human hepatic flavin-containing monooxygenases 1(FMO1) and 3(FMO3) developmental expression[J]. Pediatr Res, 2002, 51:236-243.
[20] Cashman JR, Akerman BR, Forrest SM, et al. Populationspecific polymorphisms of the human FMO3 gene:signifycance for detoxication[J]. Drug Metab Dispos, 2000, 28:169-173.
[21] Ayesh R, Mitchell SC, Zhang A, et al. The fish odour syndrome:biochemical, familial, and clinical aspects[J]. BMJ, 1993, 307:655-657.
[22] Al-Waiz M, Ayesh R, Mitchell SC, et al. A genetic polymorphism of the N-oxidation of trimethylamine in humans[J]. Clin Pharmacol Ther, 1987, 42:588-594.
[23] Larsen-Su S, Williams DE. Dietary indole-3-carbinol inhibits FMO activity and the expression of flavin-containing monooxygenase form 1 in rat liver and intestine[J]. Drug Metab Dispos, 1996, 24:927-931.
[24] Katchamart S, Stresser DM, Dehal SS, et al. Concurrent flavin-containing monooxygenase down-regulation and cytochrome P-450 induction by dietary indoles in rat:implications for drug-drug interaction[J]. Drug Metab Dispos, 2000, 28:930-936.
[25] Uehara S, Uno Y, Inoue T, et al. Activation and deactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by cytochrome P450 enzymes and flavin-containing monooxygenases in common marmosets (Callithrix jacchus)[J]. Drug Metab Dispos, 2015, 43:735-742.
[26] Zaragoza A, Andres D, Sarrion D, et al. Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment in rats. Inducibility of FAD monooxygenase system and age effect[J]. Chem Biol Interact, 2000, 124:87-101.
[27] Hukkanen J, Dempsey D, Jacob P 3rd, et al. Effect of pregnancy on a measure of FMO3 activity[J]. Br J Clin Pharmacol, 2005, 60:224-226.
[28] Kanazawa I. Short review on monoamine oxidase and its inhibitors[J]. Eur Neurol, 1994, 34 Suppl 3:36-39.
[29] Youdim MB, Finberg JP. New directions in monoamine oxidase A and B selective inhibitors and substrates[J]. Biochem Pharmacol, 1991, 41:155-162.
[30] Thorpe LW, Westlund KN, Kochersperger LM, et al. Immunocytochemical localization of monoamine oxidases A and B in human peripheral tissues and brain[J]. J Histochem Cytochem, 1987, 35:23-32.
[31] Scott AK. Sumatriptan clinical pharmacokinetics[J]. Clin Pharmacokinet, 1994, 27:337-344.
[32] Cesura AM, Imhof R, Galva MD, et al. Interactions of the novel inhibitors of MAO-B Ro 19-6327 and Ro 16-6491 with the active site of the enzyme[J]. Pharmacol Res Commun, 1988, 20 Suppl 4:51-61.
[33] Castagnoli N Jr., Chiba K, Trevor AJ. Potential bioactivation pathways for the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)[J]. Life Sci, 1985, 36:225-230.
[34] Chiba K, Trevor AJ, Castagnoli N Jr. Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes[J]. Biochem Biophys Res Commun, 1985, 128:1228-1232.
[35] Van der Walt MM, Terre'Blanche G, Petzer JP, et al. Benzyloxynitrostyrene analogues-a novel class of selective and highly potent inhibitors of monoamine oxidase B[J]. Eur J Med Chem, 2016, 125:1193-1199.
[36] Abbas N, Zaib S, Bakht SM, et al. Symmetrical aryl linked bis-iminothiazolidinones as new chemical entities for the inhibition of monoamine oxidases:synthesis, in vitro biological evaluation and molecular modelling analysis[J]. Bioorg Chem, 2016, DOI:10.1016/j.bioorg.2016.11.004.
[37] Strolin Benedetti M. FAD-dependent enzymes involved in the metabolic oxidation of xenobiotics[J]. Ann Pharm Fr, 2011, 69:45-52.
[38] Fowler JS, Logan J, Wang GJ, et al. Comparison of monoamine oxidase a in peripheral organs in nonsmokers and smokers[J]. J Nucl Med, 2005, 46:1414-1420.
[39] Sarabia SF, Liehr JG. Induction of monoamine oxidase B by 17 beta-estradiol in the hamster kidney preceding carcinogenesis[J]. Arch Biochem Biophys, 1998, 355:249-253.
[40] Ueda O, Sugihara K, Ohta S, et al. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin[J]. Drug Metab Dispos, 2005, 33:1312-1318.
[41] Zhou L, Pang X, Xie C, et al. Chemical and enzymatic transformations of nimesulide to GSH conjugates through reductive and oxidative mechanisms[J]. Chem Res Toxicol, 2015, 28:2267-2277.
[42] Hirao Y, Kitamura S, Tatsumi K. Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase[J]. Carcinogenesis, 1994, 15:739-743.
[43] Dick RA, Kanne DB, Casida JE. Identification of aldehyde oxidase as the neonicotinoid nitroreductase[J]. Chem Res Toxicol, 2005, 18:317-323.
[44] Sugihara K, Kitamura S, Tatsumi K. Involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide[J]. Drug Metab Dispos, 1996, 24:199-202.
[45] Tatsumi K, Kitamura S, Yamada H. Involvement of liver aldehyde oxidase in sulfoxide reduction[J]. Chem Pharm Bull (Tokyo), 1982, 30:4585-4588.
[46] Pryde DC, Dalvie D, Hu Q, et al. Aldehyde oxidase:an enzyme of emerging importance in drug discovery[J]. J Med Chem, 2010, 53:8441-8460.
[47] Dittrich C, Greim G, Borner M, et al. Phase I and pharmacokinetic study of BIBX 1382 BS, an epidermal growth factor receptor (EGFR) inhibitor, given in a continuous daily oral administration[J]. Eur J Cancer, 2002, 38:1072-1080.
[48] Sanoh S, Tayama Y, Sugihara K, et al. Significance of aldehyde oxidase during drug development:effects on drug metabolism, pharmacokinetics, toxicity, and efficacy[J]. Drug Metab Pharmacokinet, 2015, 30:52-63.
[49] Hutzler JM, Yang YS, Brown C, et al. Aldehyde oxidase activity in donor-matched fresh and cryopreserved human hepatocytes and assessment of variability in 75 donors[J]. Drug Metab Dispos, 2014, 42:1090-1097.
[50] Sahi J, Khan KK, Black CB. Aldehyde oxidase activity and inhibition in hepatocytes and cytosolic fractions from mouse, rat, monkey and human[J]. Drug Metab Lett, 2008, 2:176-183.
[51] Garattini E, Fratelli M, Terao M. Mammalian aldehyde oxidases:genetics, evolution and biochemistry[J]. Cell Mol Life Sci, 2008, 65:1019-1048.
[52] Garattini E, Terao M. The role of aldehyde oxidase in drug metabolism[J]. Expert Opin Drug Metab Toxicol, 2012, 8:487-503.
[53] Lolkema MP, Bohets HH, Arkenau HT, et al. The c-Met tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation[J]. Clin Cancer Res, 2015, 21:2297-2304.
[54] Austin NE, Baldwin SJ, Cutler L, et al. Pharmacokinetics of the novel, high-affinity and selective dopamine D3 receptor antagonist SB-277011 in rat, dog and monkey:in vitro/in vivo correlation and the role of aldehyde oxidase[J]. Xenobiotica, 2001, 31:677-686.
[55] Schofield PC, Robertson IGC, Paxton JW. Inter-species variation in the metabolism and inhibition of N-[(2'-dimethylamino) ethyl] acridine-4-carboxamide (DACA) by aldehyde oxidase[J]. Biochem Pharmacol, 2000, 59:161-165.
[56] Choughule KV, Joswig-Jones CA, Jones JP. Interspecies differences in the metabolism of methotrexate:an insight into the active site differences between human and rabbit aldehyde oxidase[J]. Biochem Pharmacol, 2015, 96:288-295.
[57] Obach RS. Potent inhibition of human liver aldehyde oxidase by raloxifene[J]. Drug Metab Dispos, 2004, 32:89-97.
[58] Obach RS, Huynh P, Allen MC, et al. Human liver aldehyde oxidase:inhibition by 239 drugs[J]. J Clin Pharmacol, 2004, 44:7-19.
[59] Lake BG, Ball SE, Kao J, et al. Metabolism of zaleplon by human liver:evidence for involvement of aldehyde oxidase[J]. Xenobiotica, 2002, 32:835-847.
[60] Robertson IG, Gamage RS. Methadone:a potent inhibitor of rat liver aldehyde oxidase[J]. Biochem Pharmacol, 1994, 47:584-587.
[61] Nirogi R, Kandikere V, Palacharla RC, et al. Identification of a suitable and selective inhibitor towards aldehyde oxidase catalyzed reactions[J]. Xenobiotica, 2014, 44:197-204.
[62] Strelevitz TJ, Orozco CC, Obach RS. Hydralazine as a selective probe inactivator of aldehyde oxidase in human hepatocytes:estimation of the contribution of aldehyde oxidase to metabolic clearance[J]. Drug Metab Dispos, 2012, 40:1441-1448.
[63] Johnson C, Stubley-Beedham C, Stell JGP. Elevation of molybdenum hydroxylase levels in rabbit liver after ingestion of phthalazine or its hydroxylated metabolite[J]. Biochem Pharmacol, 1984, 33:3699-3705.
[64] Beedham C, Padwick DJ, Al-Tayib Y, et al. Diurnal variation and melatonin induction of hepatic molybdenum hydroxylase activity in the guinea-pig[J]. Biochem Pharmacol, 1989, 38:1459-1464.
[65] Sugihara K, Kitamura S, Yamada T, et al. Aryl hydrocarbon receptor (AhR)-mediated induction of xanthine oxidase/xanthine dehydrogenase activity by 2,3,7,8-tetrachlorodibenzop-dioxin[J]. Biochem Biophys Res Commun, 2001, 281:1093-1099.
[66] Rivera SP, Choi HH, Chapman B, et al. Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes[J]. Toxicology, 2005, 207:401-409.
[67] Peterson GM, Boyle RR, Francis HW, et al. Dosage prescribing and plasma oxipurinol levels in patients receiving allopurinol therapy[J]. Eur J Clin Pharmacol, 1990, 39:419-421.
[68] Borges F, Fernandes E, Roleira F. Progress towards the discovery of xanthine oxidase inhibitors[J]. Curr Med Chem, 2002, 9:195-217.
[69] Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors:renaissance half a century after the discovery of allopurinol[J]. Pharmacol Rev, 2006, 58:87-114.
[70] Barr JT, Choughule KV, Nepal S, et al. Why do most human liver cytosol preparations lack xanthine oxidase activity?[J]. Drug Metab Dispos, 2014, 42:695-699.
[71] Cribb AE, Renton KW. Dissociation of xanthine oxidase induction and cytochrome P450 depression during interferon induction in the rat[J]. Biochem Pharmacol, 1993, 46:2114-2117.
[72] Moochhala SM, Renton KW. A role for xanthine oxidase in the loss of cytochrome P-450 evoked by interferon[J]. Can J Physiol Pharmacol, 1991, 69:944-950.
[73] Hassoun PM, Yu F-S, Cote CG, et al. Upregulation of xanthine oxidase by lipopolysaccharide, interleukin-1, and hypoxia:role in acute lung injury[J]. Am J Respir Crit Care Med, 1998, 158:299-305.
[74] Linder N, Martelin E, Lapatto R, et al. Posttranslational inactivation of human xanthine oxidoreductase by oxygen under standard cell culture conditions[J]. Am J Physiol Cell Physiol, 2003, 285:C48-55.
[75] Sandberg M, Yasar U, Stromberg P, et al. Oxidation of celecoxib by polymorphic cytochrome P4502C9 and alcohol dehydrogenase[J]. Br J Clin Pharmacol, 2002, 54:423-429.
[76] Diao X, Deng P, Xie C, et al. Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans:the role of cytochrome P450s and alcohol dehydrogenase in biotransformation[J]. Drug Metab Dispos, 2013, 41:430-444.
[77] Dieckhaus CM, Miller TA, Sofia RD, et al. A mechanistic approach to understanding species differences in felbamate bioactivation:relevance to drug-induced idiosyncratic reactions[J]. Drug Metab Dispos, 2000, 28:814-822.
[78] Walsh JS, Reese MJ, Thurmond LM. The metabolic activetion of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes[J]. Chem Biol Interact, 2002, 142:135-154.
[79] Thompson CD, Kinter MT, Macdonald TL. Synthesis and in vitro reactivity of 3-carbamoyl-2-phenylpropionaldehyde and 2-phenylpropenal:putative reactive metabolites of felbamate[J]. Chem Res Toxicol, 1996, 9:1225-1229.
[80] Grilo NM, Charneira C, Pereira SA, et al. Bioactivation to an aldehyde metabolite-possible role in the onset of toxicity induced by the anti-HIV drug abacavir[J]. Toxicol Lett, 2014, 224:416-423.
[81] Hoog JO, Stromberg P, Hedberg JJ, et al. The mammalian alcohol dehydrogenases interact in several metabolic pathways[J]. Chem Biol Interact, 2003, 143-144:175-181.
[82] Jornvall H, Hoog JO, Persson B, et al. Pharmacogenetics of the alcohol dehydrogenase system[J]. Pharmacology, 2000, 61:184-191.
[83] Bosron WF, Lumeng L, Li TK. Genetic polymorphism of enzymes of alcohol metabolism and susceptibility to alcoholic liver disease[J]. Mol Aspects Med, 1988, 10:147-158.
[84] Yamauchi M, Maezawa Y, Mizuhara Y, et al. Polymorphisms in alcohol metabolizing enzyme genes and alcoholic cirrhosis in Japanese patients:a multivariate analysis[J]. Hepatology, 1995, 22:1136-1142.
[85] Ronis MJ, Korourian S, Blackburn ML, et al. The role of ethanol metabolism in development of alcoholic steatohepatitis in the rat[J]. Alcohol, 2010, 44:157-169.
[86] Holm NB, Noble C, Linnet K. JWH-018ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite[J]. Toxicol Lett, 2016, 259:35-43.
[87] Felder MR, Watson G, Huff MO, et al. Mechanism of induction of mouse kidney alcohol dehydrogenase by androgen. Androgen-induced stimulation of transcription of the Adh-1 gene[J]. J Biol Chem, 1988, 263:14531-14537.
[88] Qulali M, Ross RA, Crabb DW. Estradiol induces class I alcohol dehydrogenase activity and mRNA in kidney of female rats[J]. Arch Biochem Biophys, 1991, 288:406-413.
[89] Ceci JD, Lawther R, Duester G, et al. Androgen induction of alcohol dehydrogenase in mouse kidney. Studies with a cDNA probe confirmed by nucleotide sequence analysis[J]. Gene, 1986, 41:217-224.
[90] Mukhopadhyay A, Wei B, Weiner H. Mitochondrial NAD dependent aldehyde dehydrogenase either from yeast or human replaces yeast cytoplasmic NADP dependent aldehyde dehydrogenase for the aerobic growth of yeast on ethanol[J]. Biochim Biophys Acta, 2013, 1830:3391-3398.
[91] Remize F, Andrieu E, Dequin S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae:role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation[J]. Appl Environ Microbiol, 2000, 66:3151-3159.
[92] Crabb DW, Edenberg HJ, Bosron WF, et al. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH22 allele is dominant[J]. J Clin Invest, 1989, 83:314-316.
[93] Novoradovsky A, Tsai SJ, Goldfarb L, et al. Mitochondrial aldehyde dehydrogenase polymorphism in Asian and American Indian populations:detection of new ALDH2 alleles[J]. Alcohol Clin Exp Res, 1995, 19:1105-1110.
[94] Harcombe AA, Ramsay L, Kenna JG, et al. Circulating antibodies to cardiac protein-acetaldehyde adducts in alcoholic heart muscle disease[J]. Clin Sci (Lond), 1995, 88:263-268.
[95] Li QY, Zhao NM, Ma JJ, et al. ALDH2*2 allele is a negative risk factor for cerebral infarction in Chinese women[J]. Biochem Genet, 2015, 53:260-267.
[96] Pang JJ, Barton LA, Chen YG, et al. Mitochondrial aldehyde dehydrogenase in myocardial ischemia-reperfusion injury:from bench to bedside[J]. Acta Physiol Sin, 2015, 67:535-544.
[97] Stagos D, Chen Y, Brocker C, et al. Aldehyde dehydrogenase 1B1:molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme[J]. Drug Metab Dispos, 2010, 38:1679-1687.
[98] Lipsky JJ, Shen ML, Naylor S. Overview-in vitro inhibition of aldehyde dehydrogenase by disulfiram and metabolites[J]. Chem Biol Interact, 2001, 130-132:81-91.
[99] Vasiliou V, Torronen R, Malamas M, et al. Inducibility of liver cytosolic aldehyde dehydrogenase activity in various animal species[J]. Comp Biochem Physiol C, 1989, 94:671-675.
[100] Pappas P, Sotiropoulou M, Karamanakos P, et al. Acutephase response to benzo[a]pyrene and induction of rat ALDH3A1[J]. Chem Biol Interact, 2003, 143-144:55-62.
[101] Dunn TJ, Lindahl R, Pitot HC. Differential gene expression in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Noncoordinate regulation of a TCDD-induced aldehyde dehydrogenase and cytochrome P-450c in the rat[J]. J Biol Chem, 1988, 263:10878-10886.
[102] Khan AA, Rahmani AH, Aldebasi YH, et al. Biochemical and pathological studies on peroxidases-an updated review[J]. Global J Health Sci, 2014, 6:87-98.
[103] Barawkar DA, Bandyopadhyay A, Deshpande A, et al. Discovery of pyrazole carboxylic acids as potent inhibitors of rat long chain L-2-hydroxy acid oxidase[J]. Bioorg Med Chem Lett, 2012, 22:4341-4347.
[104] Gan J, Ma S, Zhang D. Non-cytochrome P450-mediated bioactivation and its toxicological relevance[J]. Drug Metab Rev, 2016, 48:473-501.
[105] Xie C, Zhong D, Chen X. Identification of the ortho-benzoquinone intermediate of 5-O-caffeoylquinic acid in vitro and in vivo:comparison of bioactivation under normal and pathological situations[J]. Drug Metab Dispos, 2012, 40:1628-1640.
[106] Ojha R, Singh J, Ojha A, et al. An updated patent review:xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015)[J]. Expert Opin Ther Pat, 2016, 1-35.
[107] Wan Y, Zou B, Zeng H, et al. Inhibitory effect of verbascoside on xanthine oxidase activity[J]. Int J Biol Macromol, 2016, 93:609-614.