药学学报, 2017, 52(1): 19-25
引用本文:
郑啸, 王广基, 郝海平. 抑郁症中的免疫代谢调控异常与药物干预研究进展[J]. 药学学报, 2017, 52(1): 19-25.
ZHENG Xiao, WANG Guang-ji, HAO Hai-ping. Update on immune and metabolic dysregulation in major depressive disorder and the implications for drug intervention[J]. Acta Pharmaceutica Sinica, 2017, 52(1): 19-25.

抑郁症中的免疫代谢调控异常与药物干预研究进展
郑啸, 王广基, 郝海平
中国药科大学药物代谢动力学重点实验室, 江苏 南京 210009
摘要:
针对单胺类神经递质失衡的经典抗抑郁治疗方案有着较大的局限性。近年来,临床和动物实验不断揭示炎症免疫机制与抑郁症的发生、发展密切相关。随着神经-免疫-代谢互动研究的深入,免疫代谢异常驱动的神经炎症反应和病变已成为抑郁病理机制和药物干预研究的重要方向。本文在阐述抑郁症病理网络中免疫代谢失调环节的基础上,总结抗抑郁活性化合物免疫代谢调控的新作用,并探讨以上研究进展对于抗抑郁症药物研发策略和临床治疗的启示。
关键词:    抑郁症      免疫代谢调控异常      中枢外周互动      抗抑郁靶点     
Update on immune and metabolic dysregulation in major depressive disorder and the implications for drug intervention
ZHENG Xiao, WANG Guang-ji, HAO Hai-ping
Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
Abstract:
Traditional anti-depressant therapy based on the regulation of monoamine neurotransmitters has shown certain limitations. Recently, accumulating clinical and preclinical studies have reported the tantalizing link between immune dysregulation, inflammatory process and the initiation and exacerbation of major depressive disorder (MDD). With a deepening understanding of neural-immune-metabolic interactions, an immunometabolism driven disease network has attracted huge interests in understanding neuronal inflammation and dysfunction underlying MDD pathogenesis and intervention. This review describes recent data uncovering immunometabolic dysregulation as a key factor in MDD network, with a focus on the recent appreciation of immune-metabolic actions of several anti-depressant compounds. The implications for the discovery of novel antidepressant drugs and clinical management of MDD are discussed.
Key words:    major depressive disorder    immunometabolic dysregulation    brain-periphery crosstalk    antidepressant target   
收稿日期: 2016-10-31
DOI: 10.16438/j.0513-4870.2016-1054
基金项目: 国家自然科学基金资助项目(81325025,81503142).
通讯作者: 郝海平,Tel/Fax:86-25-83271060,E-mail:hhp_770505@hotmail.com
Email: hhp_770505@hotmail.com
相关功能
PDF(1111KB) Free
打印本文
0
作者相关文章
郑啸  在本刊中的所有文章
王广基  在本刊中的所有文章
郝海平  在本刊中的所有文章

参考文献:
[1] Krishnan V, Nestler EJ. The molecular neurobiology of depression[J]. Nature, 2008, 455:894-902.
[2] Kovacs D, Kovacs P, Eszlari N, et al. Psychological side effects of immune therapies:symptoms and pathomechanism[J]. Curr Opin Pharmacol, 2016, 29:97-103.
[3] Capuron L, Gumnick JF, Musselman DL, et al. Neurobehavioral effects of interferon-alpha in cancer patients:phenomenology and paroxetine responsiveness of symptom dimensions[J]. Neuropsychopharmacology, 2002, 26:643-652.
[4] Dantzer R, O'Connor JC, Freund GG, et al. From inflammation to sickness and depression:when the immune system subjugates the brain[J]. Nat Rev Neurosci, 2008, 9:46-56.
[5] Hodes GE, Kana V, Menard C, et al. Neuroimmune mechanisms of depression[J]. Nat Neurosci, 2015, 18:1386-1393.
[6] Penninx BW, Milaneschi Y, Lamers F, et al. Understanding the somatic consequences of depression:biological mechanisms and the role of depression symptom profile[J]. BMC Med, 2013, 11:129.
[7] Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease[J]. Trends Neurosci, 2015, 38:637-658.
[8] Delpech JC, Madore C, Nadjar A, et al. Microglia in neuronal plasticity:influence of stress[J]. Neuropharmacology, 2015, 96:19-28.
[9] Cao X, Li LP, Wang Q, et al. Astrocyte-derived ATP modulates depressive-like behaviors[J]. Nat Med, 2013, 19:773-777.
[10] Wohleb ES, Powell ND, Godbout JP, et al. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior[J]. J Neurosci, 2013, 33:13820-13833.
[11] Wohleb ES, McKim DB, Shea DT, et al. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain[J]. Biol Psychiatry, 2014, 75:970-981.
[12] Kim SJ, Lee H, Lee G, et al. CD4+CD25+ regulatory T cell depletion modulates anxiety and depression-like behaviors in mice[J]. PLoS One, 2012, 7:e42054.
[13] Slyepchenko A, Maes M, Kohler CA, et al. T helper 17 cells may drive neuroprogression in major depressive disorder:proposal of an integrative model[J]. Neurosci Biobehav Rev, 2016, 64:83-100.
[14] Haapakoski R, Mathieu J, Ebmeier KP, et al. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 49:206-215.
[15] Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients:comparisons between schizophrenia, bipolar disorder and depression[J]. Mol Psychiatry, 2016, 21:1696-1709.
[16] Prossin AR, Koch AE, Campbell PL, et al. Acute experimental changes in mood state regulate immune function in relation to central opioid neurotransmission:a model of human CNS-peripheral inflammatory interaction[J]. Mol Psychiatry, 2016, 21:243-251.
[17] Grosse L, Hoogenboezem T, Ambree O, et al. Deficiencies of the T and natural killer cell system in major depressive disorder:T regulatory cell defects are associated with inflammatory monocyte activation[J]. Brain Behav Immun, 2016, 54:38-44.
[18] Hodes GE, Pfau ML, Leboeuf M, et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress[J]. Proc Natl Acad Sci U S A, 2014, 111:16136-16141.
[19] Van Oudenhove L, Crowell MD, Drossman DA, et al. Biopsychosocial aspects of functional gastrointestinal disorders[J]. Gastroenterology, 2016, DOI:10.1053/j.gastro.2016.02. 027.
[20] Zheng PY, Feng BS, Oluwole C, et al. Psychological stress induces eosinophils to produce corticotrophin releasing hormone in the intestine[J]. Gut, 2009, 58:1473-1479.
[21] Wu W, Sun M, Zhang HP, et al. Prolactin mediates psychological stress-induced dysfunction of regulatory T cells to facilitate intestinal inflammation[J]. Gut, 2014, 63:1883-1892.
[22] Bailey MT, Dowd SE, Galley JD, et al. Exposure to a social stressor alters the structure of the intestinal microbiota:implications for stressor-induced immunomodulation[J]. Brain Behav Immun, 2011, 25:397-407.
[23] Aoki-Yoshida A, Aoki R, Moriya N, et al. Omics studies of the murine intestinal ecosystem exposed to subchronic and mild social defeat stress[J]. J Proteome Res, 2016, 15:3126-3138.
[24] Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease[J]. Nature Med, 2016, 22:1079-1089.
[25] Bruce-Keller AJ, Salbaum JM, Luo M, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity[J]. Biol Psychiatry, 2015, 77:607-615.
[26] Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Mol Psychiatry, 2016, 21:786-796.
[27] Frick LR, Rapanelli M, Cremaschi GA, et al. Fluoxetine directly counteracts the adverse effects of chronic stress on T cell immunity by compensatory and specific mechanisms[J]. Brain Behav Immun, 2009, 23:36-40.
[28] Ramirez K, Sheridan JF. Antidepressant imipramine diminishes stress-induced inflammation in the periphery and central nervous system and related anxiety-and depressivelike behaviors[J]. Brain Behav Immun, 2016, 57:293-303.
[29] Kreisel T, Frank MG, Licht T, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis[J]. Mol Psychiatry, 2014, 19:699-709.
[30] Ramirez K, Niraula A, Sheridan JF. GABAergic modulation with classical benzodiazepines prevent stress-induced neuroimmune dysregulation and behavioral alterations[J]. Brain Behav Immun, 2016, 51:154-168.
[31] Norden DM, Devine R, Bicer S, et al. Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue[J]. Physiol Behav, 2015, 140:230-235.
[32] Kennedy PJ, Cryan JF, Dinan TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis[J]. Neuropharmacology, 2016, 112(Pt B):399-412.
[33] Stone TW, Stoy N, Darlington LG. An expanding range of targets for kynurenine metabolites of tryptophan[J]. Trends Pharmacol Sci, 2013, 34:136-143.
[34] Fuertig R, Azzinnari D, Bergamini G, et al. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour:both effects are reversed by inhibition of indoleamine 2,3-dioxygenase[J]. Brain Behav Immun, 2016, 54:59-72.
[35] Kim H, Chen L, Lim G, et al. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression[J]. J Clin Invest, 2012, 122:2940-2954.
[36] Agudelo LZ, Femenia T, Orhan F, et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression[J]. Cell, 2014, 159:33-45.
[37] Schlittler M, Goiny M, Agudelo LZ, et al. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans[J]. Am J Physiol Cell Physiol, 2016, 310:C836-840.
[38] Zheng X, Ma S, Kang A, et al. Chemical dampening of Ly6Chi monocytes in the periphery produces anti-depressant effects in mice[J]. Sci Rep, 2016, 6:19406.
[39] Gibney SM, Fagan EM, Waldron AM, et al. Inhibition of stress-induced hepatic tryptophan 2,3-dioxygenase exhibits antidepressant activity in an animal model of depressive behaviour[J]. Int J Neuropsychopharmacol, 2014, 17:917-928.
[40] Fleshner M, Frank M, Maier SF. Danger signals and inflammasomes:stress-evoked sterile inflammation in mood disorders[J]. Neuropsychopharmacology, 2017, 42:36-45.
[41] Wong ML, Inserra A, Lewis MD, et al. Inflammasome signaling affects anxiety-and depressive-like behavior and gut microbiome composition[J]. Mol Psychiatry, 2016, 21:797-805.
[42] Iwata M, Ota KT, Li XY, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor[J]. Biol Psychiatry, 2016, 80:12-22.
[43] Zunszain PA, Anacker C, Cattaneo A, et al. Interleukin-1beta:a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis[J]. Neuropsychopharmacology, 2012, 37:939-949.
[44] Xu Y, Sheng H, Bao Q, et al. NLRP3 inflammasome activation mediates estrogen deficiency-induced depressionand anxiety-like behavior and hippocampal inflammation in mice[J]. Brain Behav Immun, 2016, 56:175-186.
[45] Du RH, Tan J, Sun XY, et al. Fluoxetine inhibits NLRP3 inflammasome activation:implication in depression[J]. Int J Neuropsychopharmacol, 2016, DOI:10.1093/ijnp/pyw037.
[46] Iwata M, Ota KT. Duman RS The inflammasome:pathways linking psychological stress, depression, and systemic illnesses[J]. Brain Behav Immun, 2013, 31:105-114.
[47] Zheng X, Zhang X, Wang G, et al. Treat the brain and treat the periphery:toward a holistic approach to major depressive disorder[J]. Drug Discov Today, 2015, 20:562-568.
[48] Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology:translational implications of the impact of inflammation on behavior[J]. Neuropsychopharmacology, 2012, 37:137-162.
[49] Weinberger JF, Raison CL, Rye DB, et al. Inhibition of tumor necrosis factor improves sleep continuity in patients with treatment resistant depression and high inflammation[J]. Brain Behav Immun, 2015, 47:193-200.
[50] Beurel E, Harrington LE. Jope RS Inflammatory T helper 17 cells promote depression-like behavior in mice[J]. Biol Psychiatry, 2013, 73:622-630.
[51] Kang A, Hao H, Zheng X, et al. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy[J]. J Neuroinflammation, 2011, 8:100.
[52] Schmidt C. Mental health:thinking from the gut[J]. Nature, 2015, 518:S12-15.
[53] Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress[J]. Neuroscience, 2015, 310:561-577.
[54] Pusceddu MM, El Aidy S, Crispie F, et al. N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota[J]. PLoS One, 2015, 10:e0139721.
[55] Wohleb ES, Franklin T, Iwata M, et al. Integrating neuroimmune systems in the neurobiology of depression[J]. Nat Rev Neurosci, 2016, 17:497-511.
[56] Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48:186-194.
[57] Dinan TG, Cryan JF. Microbes, immunity, and behavior:psychoneuroimmunology meets the microbiome[J]. Neuropsychopharmacology, 2017, 42:178-192.
[58] Blume J, Douglas SD, Evans DL. Immune suppression and immune activation in depression[J]. Brain Behav Immun, 2011, 25:221-229.
[59] Hao H, Zheng X, Wang G. Insights into drug discovery from natural medicines using reverse pharmacokinetics[J]. Trends Pharmacol Sci, 2014, 35:168-177.
[60] Lamers F, Vogelzangs N, Merikangas KR, et al. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression[J]. Mol psychiatry, 2013, 18:692-699.
[61] Raison CL, Rutherford RE, Woolwine BJ, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression:the role of baseline inflammatory biomarkers[J]. JAMA Psychiatry, 2013, 70:31-41.
[62] Milaneschi Y, Lamers F, Peyrot WJ, et al. Polygenic dissection of major depression clinical heterogeneity[J]. Molecular psychiatry, 2016, 21:516-522.