药学学报, 2017, 52(1): 34-43
引用本文:
高雪姣, 李婷, 魏斌, 严志祥, 燕茹. 肠道菌群介导溃疡性结肠炎大鼠肠CYP3A和P-糖蛋白的变化及机制[J]. 药学学报, 2017, 52(1): 34-43.
GAO Xue-jiao, LI Ting, WEI Bin, YAN Zhi-xiang, YAN Ru. Regulatory mechanisms of gut microbiota on intestinal CYP3A and P-glycoprotein in rats with dextran sulfate sodium-induced colitis[J]. Acta Pharmaceutica Sinica, 2017, 52(1): 34-43.

肠道菌群介导溃疡性结肠炎大鼠肠CYP3A和P-糖蛋白的变化及机制
高雪姣1,2, 李婷1,2, 魏斌1,2, 严志祥1,2, 燕茹1,2
1. 澳门大学中华医药研究院, 中药质量研究国家重点实验室(澳门大学), 澳门 999078;
2. 珠海澳大科技研究院, 广东 珠海 519080
摘要:
肠道细胞色素P450 3A(cytochrome P450 3A,CYP3A)和P-糖蛋白(P-glycoprotein,P-gp)是肠屏障的重要组成部分。炎症性肠病中肠CYP3A和P-gp下调伴随肠道菌群紊乱。但两者是否关联?机制如何?尚不清楚。本研究采用5%葡聚糖硫酸钠诱导大鼠溃疡性结肠炎(ulcerative colitis,UC),并对正常动物分别灌胃正常及UC动物粪便,发现粪便移植改变了受体动物肠道菌组成,而移植UC粪便组肠CYP3A2和P-gp mRNA的表达显著下调。外膜囊泡(outer-membrane vesicles,OMVs)是革兰阴性菌产生、进行群体行为及与环境通信的关键结构。不同处理组的OMVs均能下调人结肠腺癌细胞Caco-2中CYP3A4和P-gp的mRNA表达,而UC组以及UC粪便处理组的OMVs的抑制作用更强,且相对分子质量3~5万的OMVs组分的作用更显著。细胞经toll样受体4(toll like receptor 4,TLR4)抑制剂瑞沙托维处理或转染TLR4 siRNA能够阻断OMVs对CYP3A4和P-gp的下调。本研究证实,UC肠道菌部分通过分泌OMVs活化TLR4受体通路下调肠道CYP3A和P-gp表达。
关键词:    肠道菌群失衡      粪菌移植      外膜囊泡      肠细胞色素P450 3A      肠P-糖蛋白      toll样受体4     
Regulatory mechanisms of gut microbiota on intestinal CYP3A and P-glycoprotein in rats with dextran sulfate sodium-induced colitis
GAO Xue-jiao1,2, LI Ting1,2, WEI Bin1,2, YAN Zhi-xiang1,2, YAN Ru1,2
1. State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
2. UM Zhuhai Research Institute, Zhuhai 519080, China
Abstract:
As important constituents of the first-line of host defense barrier, intestinal cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp) play important roles in disease pathogenesis as well as drug absorption and exposure. Clinical reports and experimental data revealed diminished intestinal CYP3A and P-gp expression accompanying with gut dysbiosis in inflammatory bowel disease. Yet whether gut dysbiosis is associated with the down-regulation of CYP3A and P-gp and the underlying mechanisms are unclear. In this study, daily administration of fresh feces from normal rats and rats with ulcerative colitis (UC) induced by dextran sulfate sodium to normal rats resulted in alterations of gut bacterial compositions. Intestinal CYP3A2 and P-gp were significantly down-regulated in rats receiving UC feces. Outer-membrane vesicles (OMVs) are nano-scale special buds of the outer membrane which are produced by Gram-negative bacteria and mediate diverse functions including interactions within bacterial communities and communications with host. Expressions of CYP3A4 and P-gp mRNA were diminished in human epithelial colorectal adenocarcinoma cells (Caco-2) treated by OMVs from all different groups with OMVs from UC rats or rats receiving UC feces showing more significant effects.Moreover, the OMVs fractions within 30 000-50 000 Daltons from both normal and UC rats elicited more effects than fractions of other molecular weights. Treatment of Caco-2 cells with toll like receptor 4 (TLR4) inhibitor resatorvid (TAK-242) or TLR4 silence RNA (siRNA) blocked CYP3A4 and P-gp down-regulation induced by bacterial OMVs. Taken together, we proved in this study that gut microbiota can down-regulate intestinal CYP3A and P-gp partially through producing OMVs to activate the TLR4 signaling pathway.
Key words:    gut dysbiosis    fecal microbiota transplantation    outer membrane vesicles    intestinal cytochrome P450 3A    intestinal P-glycoprotein    toll like receptor 4   
收稿日期: 2016-10-17
DOI: 10.16438/j.0513-4870.2016-1002
基金项目: 国家自然科学基金资助项目(81473281);973基金资助项目(2009CB522707);澳门大学基金资助项目(MYRG2015-00220).
通讯作者: 燕茹,E-mail:ruyan@umac.mo
Email: ruyan@umac.mo
相关功能
PDF(1222KB) Free
打印本文
0
作者相关文章
高雪姣  在本刊中的所有文章
李婷  在本刊中的所有文章
魏斌  在本刊中的所有文章
严志祥  在本刊中的所有文章
燕茹  在本刊中的所有文章

参考文献:
[1] Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health:a new clinical frontier[J]. Gut, 2016, 65:330-339.
[2] Kawauchi S, Nakamura T, Miki I, et al. Downregulation of CYP3A and P-glycoprotein in the secondary inflammatory response of mice with dextran sulfate sodium-induced colitis and its contribution to cyclosporine A blood concentrations[J]. J Pharmacol Sci, 2014, 124:180-191.
[3] Bjorkholm B, Bok CM, Lundin A, et al. Intestinal microbiota regulate xenobiotic metabolism in the liver[J]. PLoS One, 2009, 4:e6958.
[4] Selwyn FP, Cheng SL, Bammler TK, et al. Developmental regulation of drug-processing genes in livers of germ-free mice[J]. Toxicol Sci, 2015, 147:84-103.
[5] Venkatesh M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4[J]. Immunity, 2014, 41:296-310.
[6] Claus SP, Ellero SL, Berger B, et al. Colonization-induced host-gut microbial metabolic interaction[J]. MBio, 2011, 2:e00271-10.
[7] Gandhi AS, Guo T, Shah P, et al. CYP3A-dependent drug metabolism is reduced in bacterial inflammation in mice[J]. Br J Pharmacol, 2012, 166:2176-2187.
[8] Komori Y, Arisawa S, Takai M, et al. Ursodeoxycholic acid inhibits overexpression of P-glycoprotein induced by doxorubicin in HepG2 cells[J]. Eur J Pharmacol, 2014, 724:161-167.
[9] Tomita M, Takizawa Y, Kanbayashi A, et al. Suppression of efflux transporters in the intestines of endotoxin-treated rats[J]. Int J Pharm, 2012, 428:33-38.
[10] Saksena S, Goyal S, Raheja G, et al. Upregulation of P-glycoprotein by probiotics in intestinal epithelial cells and in the dextran sulfate sodium model of colitis in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300:G1115-G1123.
[11] Vigsnaes LK, Brynskov J, Steenholdt C, et al. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls[J]. Benef Microbes, 2012, 3:287-297.
[12] Kaparakis-Liaskos M,Ferrero RL. Immune modulation by bacterial outer membrane vesicles[J]. Nat Rev Immunol, 2015, 15:375-387.
[13] Zhao K, Deng X, He C, et al. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the toll-like receptor 4 signaling pathway[J]. Infect Immun, 2013, 81:4509-4518.
[14] Zariri A, Beskers J, van de Waterbeemd B, et al. Meningococcal outer membrane vesicle composition-dependent activetion of the innate immune response[J]. Infect Immun, 2016, 84:3024-3033.
[15] Kim JH, Yoon YJ, Lee J, et al. Outer membrane vesicles derived from Escherichia coli up-regulate expression of endothelial cell adhesion molecules in vitro and in vivo[J]. PLoS One, 2013, 8:e59276.
[16] Ben-Amor K, Heilig H, Smidt H, et al. Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis[J]. Appl Environ Microbiol, 2005, 71:4679-4689.
[17] Matsuki T, Watanabe K, Fujimoto J, et al. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces[J]. Appl Environ Microbiol, 2002, 68:5445-5451.
[18] Bartosch S, Fite A, Macfarlane GT, et al. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota[J]. Appl Environ Microbiol, 2004, 70:3575-3581.
[19] Conte MP, Schippa S, Zamboni I, et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease[J]. Gut, 2006, 55:1760-1767.
[20] Byun R, Nadkarni MA, Chhour KL, et al. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries[J]. J Clin Microbiol, 2004, 42:3128-3136.
[21] Matsuki T, Watanabe K, Fujimoto J, et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces[J]. Appl Environ Microbiol, 2004, 70:7220-7228.
[22] Muhling M, Woolven-Allen J, Murrell JC, et al. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities[J]. ISME J, 2008, 2:379-392.
[23] Park KS, Lee J, Jang SC, et al. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa[J]. Am J Respir Cell Mol Biol, 2013, 49:637-645.
[24] Aiba T, Susa M, Fukumori S, et al. The effects of culture conditions on CYP3A4 and MDR1 mRNA induction by 1α, 25-dihydroxyvitamin D3 in human intestinal cell lines, Caco-2 and LS180[J]. Drug Metab Pharmacokinet, 2005, 20:268-274.
[25] Zhang Y, Li Y, Li Q. Inhibition of cytochrome P4503A in rat liver by the diorganotin (IV) compound di-n-butyl-di-(4-chlorobenzo-hydroxamato)tin (IV) and its probable mechanism[J]. Molecules, 2012, 17:10994-11009.
[26] Chisaki I, Kobayashi M, Itagaki S, et al. Liver X receptor regulates expression of MRP2 but not that of MDR1 and BCRP in the liver[J]. Biochim Biophys Acta, 2009, 1788:2396-2403.
[27] Liu H, Wu B, Pan G, et al. Metabolism and pharmacokinetics of mangiferin in conventional rats, pseudo-germ-free rats, and streptozotocin-induced diabetic rats[J]. Drug Metab Dispos, 2012, 40:2109-2118.
[28] Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nat Rev Immunol, 2009, 9:313-323.
[29] Rooks MG, Veiga P, Wardwell-Scott LH, et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission[J]. ISME J, 2014, 8:1403-1417.
[30] van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile[J]. N Engl J Med, 2013, 368:407-415.
[31] Borody TJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation:indications, methods, evidence, and future directions[J]. Curr Gastroenterol Rep, 2013, 15:337.
[32] Baek SJ, Kim SH, Lee CK, et al. Relationship between the severity of diversion colitis and the composition of colonic bacteria:a prospective study[J]. Gut Liver, 2014, 8:6.
[33] Bullock NR, Booth JC, Gibson GR. Comparative composition of bacteria in the human intestinal microflora during remission and active ulcerative colitis[J]. Curr Issues Intest Microbiol, 2004, 5:59-64.
[34] Toda T, Ohi K, Kudo T, et al. Antibiotics suppress CYP3A in the mouse liver by reducing lithocholic acid-producing intestinal flora[J]. J Pharm Soc Jpn, 2009, 129:601-608.
[35] Cerveny L, Svecova L, Anzenbacherova E, et al. Valproic acid induces CYP3A4 and MDR1 gene expression by activetion of constitutive androstane receptor and pregnane X receptor pathways[J]. Drug Metab Dispos, 2007, 35:1032-1041.
[36] Pascussi JM,Vilarem MJ. Inflammation and drug metabolism:NF-kB and the CAR and PXR xeno-receptors[J]. Med Sci (Paris), 2008, 24:301-305.