药学学报, 2017, 52(2): 198-205
引用本文:
杨玉秀, 李苏颖, 张倩, 夏之宁, 杨丰庆. 固定化技术在中药活性成分筛选中的应用[J]. 药学学报, 2017, 52(2): 198-205.
YANG Yu-xiu, LI Su-ying, ZHANG Qian, XIA Zhi-ning, YANG Feng-qing. Applications of immobilization techniques in the screening of active constituents from traditional Chinese medicines[J]. Acta Pharmaceutica Sinica, 2017, 52(2): 198-205.

固定化技术在中药活性成分筛选中的应用
杨玉秀1, 李苏颖2, 张倩1, 夏之宁1, 杨丰庆1
1. 重庆大学化学化工学院, 重庆 400031;
2. 河南医学高等专科学校药学系, 河南 郑州 451191
摘要:
基于小分子化合物与生物材料(细胞、细菌、蛋白质等)的亲和性质发展起来的中药活性成分筛选方法在中药研究领域应用广泛。固定化技术能以一定的方式将生物材料固定在载体上,在保持生物材料活性的同时,具有高效、操作简便、易于连续化和自动化等优点。载体材料包括硅胶、磁性微球、中空纤维以及表面等离子共振传感芯片等均已成功实现不同生物材料的固定化,并应用于中药活性成分的筛选。本文对固定化技术在中药活性成分筛选方面的研究进行总结,为固定化技术的进一步推广应用提供科学参考。
关键词:    中药活性成分      筛选      生物材料      固定化技术      载体材料     
Applications of immobilization techniques in the screening of active constituents from traditional Chinese medicines
YANG Yu-xiu1, LI Su-ying2, ZHANG Qian1, XIA Zhi-ning1, YANG Feng-qing1
1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400031, China;
2. Department of Pharmacy, Henan Medical College, Zhengzhou 451191, China
Abstract:
It has been an active approach to screen the active ingredients in traditional Chinese medicines (TCMs) according to the affinity property between small molecule compounds and biomaterials such as cells, bacteria and proteins. On the other hand, the biomaterials can be immobilized on a solid support before the screening procedure. The immobilization method not only can maintain the biological activities of biomaterials, but also have other advantages such as high efficiency, simple operation, easy to be continuous and automatic, etc. Carrier materials (solid supports) for the immobilization including silica gel, magnetic materials, hollow fiber, and the surface plasma resonance sensor chips have been used to immobilize biomaterials and successfully applied in the screening of active ingredients from TCMs. In this paper, applications of immobilization techniques in the screening of active components from TCMs were reviewed to provide a scientific reference to the future applications.
Key words:    active ingredient    screening    biomaterial    immobilized technique    carrier material   
收稿日期: 2016-08-15
DOI: 10.16438/j.0513-4870.2016-0750
基金项目: 国家自然科学基金资助项目(81202886,21275169)
通讯作者: 杨丰庆,E-mail:fengqingyang@cqu.edu.cn
Email: fengqingyang@cqu.edu.cn
相关功能
PDF(1751KB) Free
打印本文
0
作者相关文章
杨玉秀  在本刊中的所有文章
李苏颖  在本刊中的所有文章
张倩  在本刊中的所有文章
夏之宁  在本刊中的所有文章
杨丰庆  在本刊中的所有文章

参考文献:
[1] Li P, Qi LW, Liu EH, et al. Analysis of Chinese herbal medicines with holistic approaches and integrated evaluation models[J]. Trend Anal Chem, 2008, 27:66-77.
[2] Hwang ET, Gu MB. Enzyme stabilization by nano/microsized hybrid materials[J]. Eng Life Sci, 2013, 13:49-61.
[3] Kan AA, Alzohairy MA. Recent advances and applications of immobilized enzyme technologies:a review[J]. Res J Biol Sci, 2010, 5:565-575.
[4] Mahmoud KA, Lam E, Hrapovic S, et al. Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme[J]. ACS Appl Mater Inter, 2013, 5:4978-4985.
[5] Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials:a review[J]. Biotechnol Adv, 2012, 30:512-523.
[6] Habicht KL, Singh NS, Khadeer MA, et al. Characterization of a multiple endogenously expressed adenosine triphosphatebinding cassette transporters using nuclear and cellular membrane affinity chromatography columns[J]. J Chromatogr A, 2014, 1339:80-85.
[7] Rastian Z, Khodadadi AA, Vahabzadeh F, et al. Facile surface functionalization of multiwalled carbon nanotubes by soft dielectric barrier discharge plasma:generate compatible interface for lipase immobilization[J]. Biochem Eng J, 2014, 90:16-26.
[8] Zhao GH, Wang JZ, Li YF, et al. Enzymes immobilized on superparamagnetic Fe3O4@Clays nanocomposites:preparation, characterization, and a new strategy for the regeneration of supports[J]. J Phys Chem C, 2011, 115:6350-6359.
[9] Li Y, Xu J, Chen Y, et al. Screening of inhibitors of glycogen synthase kinase-3β from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with highperformance liquid chromatography[J]. J Chromatogr A, 2015, 1425:8-16.
[10] Xu N, Yang H, Cui M, et al. High-performance liquid chromatography-electrospray ionization-mass spectrometry ligand fishing assay:a method for screening triplex DNA binders from natural plant extracts[J]. Anal Chem, 2012, 84:2562-2568.
[11] Zhu W, Zhang Y, Hou C, et al. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer[J]. J Nanopart Res, 2016, 18:32.
[12] Sheldon RA, Vanpelt S. Enzyme immobilisation in biocatalysis:why, what and how[J]. Chem Soc Rev, 2013, 42:6223-6235.
[13] Chen X, Cao Y, Zhang H, et al. Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli[J]. Anal Chem, 2014, 86:4748-4757.
[14] He H, Han S, Zhang T, et al. Screening active compounds acting on the epidermal growth factor receptor from Radix scutellariae via cell membrane chromatography online coupled with HPLC/MS[J]. J Pharm Biomed Anal, 2012, 62:196-202.
[15] Liu J, Yang J, Wang SC, et al. Combining human periodontal ligament cell membrane chromatography with online HPLC/MS for screening osteoplastic active compounds from Coptidis Rhizoma[J]. J Chromatogr B, 2012, 804:115-120.
[16] Hou XF, Wang SC, Zhang T, et al. Recent advances in cell membrane chromatography for traditional Chinese medicines analysis[J]. J Pharm Biomed Anal, 2014, 101:141-150.
[17] He LC, Wang SC, Geng XD. Coating and fusing cell membranes onto a silica surface and their chromatographic characteristics[J]. Chromatographia, 2001, 54:71-76.
[18] Wang S, Wang C, Zhao X, et al. Comprehensive twodimensional high performance liquid chromatography system with immobilized liposome chromatography column and monolithic column for separation of the traditional Chinese medicine Schisandra chinensis[J]. Anal Chim Acta, 2012, 713:121-129.
[19] Zhang C, Li J, Xu L, et al. Fast immobilized liposome chromatography based on penetrable silica microspheres for screening and analysis of permeable compounds[J]. J Chromatogr A, 2012, 1233:78-84.
[20] Wei JX, Shi ZG, Chen F, et al. Synthesis of penetrable macroporous silica spheres for high-performance liquid chromatography[J]. J Chromatogr A, 2009, 1216:7388-7393.
[21] Wang S, Zhao K, Zang W, et al. Highly selective screening of the bioactive compounds in Huoxue capsule using immobilized β2-adrenoceptor affinity chromatography[J]. Anal Biochem, 2014, 457:1-7.
[22] Hu L, Li X, Feng S, et al. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column[J]. J Sep Sci, 2006, 29:881-888.
[23] Su X, Hu L, Kong L, et al. Affinity chromatography with immobilized DNA stationary phase for biological fingerprinting analysis of traditional Chinese medicines[J]. J Chromatogr A, 2007, 1154:132-137.
[24] Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chem Rev, 2008, 108:2064-2110.
[25] Tao Y, Zhang Y, Cheng Y, et al. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR[J]. Biomed Chromatogr, 2013, 27:148-155.
[26] Zhang Y, Nie M, Shi S, et al. Integration of magnetic solid phase fishing and off-line two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry for screening and identification of human serum albumin binders from Radix astragali[J]. Food Chem, 2014, 146:56-64.
[27] Wan LH, Jiang XL, Liu YM, et al. Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism[J]. Anal Bioanal Chem, 2016, 408:2275-2283.
[28] Wong LS, Khan F, Micklefield J. Selective covalent protein immobilization:strategies and applications[J]. Chem Rev, 2009, 109:4025-4053.
[29] Yan Y, Chen X, Hu S, et al. Applications of liquid-phase microextraction techniques in natural product analysis:a review[J]. J Chromatogr A, 2014, 1368:1-17.
[30] Yan Y, Hao Y, Hu S, et al. Hollow fibre cell fishing with high performance liquid chromatography for screening bioactive anthraquinones from traditional Chinese medicines[J]. J Chromatogr A, 2013, 1322:8-17.
[31] Tao Y, Zhang Y, Wang Y, et al. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from lotus leaf[J]. Anal Chim Acta, 2013, 785:75-81.
[32] Xue X, Li L, Chen X, et al. Hollow fiber cell fishing with high performance liquid chromatography for screening bioactive compounds from traditional Chinese medicines[J]. J Chromatogr A, 2013, 1280:75-83.
[33] Ou HC. Preparation and Application of the Biosensor Based on the Principle of SPR (基于SPR技术的传感芯片的研制及其应用)[D]. Beijing:Peking Union Medical College, 2009.
[34] Wang XP, Hong XY, Zhan SY, et al. Surface plasmon resonance sensing technology and bioanalytical instrument[J]. Prog Chem (化学进展), 2014, 26:1143-1159.
[35] Zhang Y, Shi S, Guo J, et al. On-line surface plasmon resonance-high performance liquid chromatography-tandem mass spectrometry for analysis of human serum albumin binders from Radix astragali[J]. J Chromatogr A, 2013, 1293:92-99.
[36] Peng M, Zhang Y, Shi S, et al. Simultaneous ligand fishing and identification of human serum albumin binders from Eucommia ulmoides bark using surface plasmon resonancehigh performance liquid chromatography-tandem mass spectrometry[J]. J Chromatogr B, 2013, 940:86-93.
[37] Zheng X, Yang D, Liu X, et al. Identification of a new anti-LPS agent, geniposide, from Gardenia jasminoides Ellis, and its ability of direct binding and neutralization of lipopolysaccharide in vitro and in vivo[J]. Int Immunopharmacol, 2010, 10:1209-1219.
[38] Liu X, Zheng X, Long Y, et al. Dual targets guided screening and isolation of kukoamine B as a novel natural anti-sepsis agent from traditional Chinese herb Cortex lycii[J]. Int Immunopharmacol, 2011, 11:110-120.
[39] Ye YH, Li C, Yang J, et al. Construction of an immobilised acetylcholinesterase column and its application in screening insecticidal constituents from Magnolia officinalis[J]. Pest Manag Sci, 2015, 71:607-615.
[40] Li Q, Wang J, Liu G, et al. Screening bioactive compounds from Ligusticum chuanxiong by high density immobilized human umbilical vein endothelial cells[J]. Anal Bioanal Chem, 2015, 407:5783-5792.
[41] Wang H, Zhao X, Wang S, et al. Fabrication of enzymeimmobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures[J]. J Chromatogr A, 2015, 1392:20-27.
[42] Zhang A, Ye F, Lu J, et al. Screening α-glucosidase inhibitor from natural products by capillary electrophoresis with immobilised enzyme onto polymer monolith modified by gold nanoparticles[J]. Food Chem, 2013, 141:1854-1859.
[43] Zhang Q, Chen C, Wang FQ, et al. Simultaneous screening and analysis of antiplatelet aggregation active alkaloids from Rhizoma Corydalis[J]. Pharm Biol, 2016, 54:3113-3120.