药学学报, 2017, 52(7): 1085-1090
引用本文:
薛妮娜, 金晶, 陈晓光. 辅助分子伴侣对HSP90构象功能的调节及其在肿瘤中的作用[J]. 药学学报, 2017, 52(7): 1085-1090.
XUE Ni-na, JIN Jing, CHEN Xiao-guang. Co-chaperones: regulated action in conformational functions of HSP90 and their actions in cancer[J]. Acta Pharmaceutica Sinica, 2017, 52(7): 1085-1090.

辅助分子伴侣对HSP90构象功能的调节及其在肿瘤中的作用
薛妮娜, 金晶, 陈晓光
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要:
热休克蛋白90(heat shock protein 90,HSP90)作为一种重要的分子伴侣,参与调控众多原癌客户蛋白的折叠、装配和成熟,在肿瘤的发生发展中发挥重要作用。三磷酸腺苷(adenosine triphosphate,ATP)的结合和二磷酸腺苷(adenosine diphosphate,ADP)/ATP的交换是驱动HSP90分子伴侣构象循环的关键要素。其中一些辅助分子伴侣协助HSP90的构象循环过程,参与肿瘤恶性进展。本文对一些常见的辅助分子伴侣,如Hop、CDC37、p23、AHA1和PP5等的结构、功能及其协助HSP90参与肿瘤发生发展的过程进行综述。
关键词:   
Co-chaperones: regulated action in conformational functions of HSP90 and their actions in cancer
XUE Ni-na, JIN Jing, CHEN Xiao-guang
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Heat shock protein 90(HSP90), as an essential molecular chaperone, regulates the folding, assembly and maturation of a wide range of oncogenic client proteins. The process of adenosine triphosphate(ATP)binding and adenosine diphosphate(ADP)/ATP exchange act as a conformational switch to regulate the chaperone function of HSP90. Furthermore, this process is controlled by a range of accessory proteins(as referred to co-chaperones), such as Hop, CDC37, p23, AHA1, PP5, etc. This article describes the structure and function of several co-chaperones, and their roles in tumor progress.
Key words:   
收稿日期: 2017-01-05
DOI: 10.16438/j.0513-4870.2017-0020
基金项目: 国家自然科学基金资助项目(81573466)
通讯作者: 陈晓光,Tel/Fax:86-10-63165207,E-mail:chxg@imm.ac.cn
Email: chxg@imm.ac.cn
相关功能
PDF(333KB) Free
打印本文
0
作者相关文章

参考文献:
[1] Young JC, Moarefi I, Hartl FU. Hsp90: a specialized but essential protein-folding tool [J]. J Cell Biol, 2001, 154: 267-273.
[2] Bao XQ, Liu GT. Heat shock proteins: new target in cytoprotective and tumor therapy [J]. Acta Pharm Sin(药学学报), 2008, 43: 234-240.
[3] Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone [J]. Cancer Lett, 2004, 206: 149-157.
[4] Csermely P, Kajtár J, Hollósi M, et al. ATP induces a conformational change of the 90-kDa heat shock protein(hsp90)[J]. J Biol Chem, 1993, 268: 1901-1907.
[5] Prodromou C, Panaretou B, Chohan S, et al. The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains [J]. EMBO J, 2000, 19: 4383-4392.
[6] Prodromou C, Siligardi G, O'Brien R, et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat(TPR)-domain co-chaperones [J]. EMBO J, 1999, 18: 754-762.
[7] Scheufler C, Brinker A, Bourenkov G, et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine [J]. Cell, 2000, 101: 199-210.
[8] Shiau AK, Harris SF, Southworth DR, et al. Structural analysis of E.coli hsp90 reveals dramatic nucleotide-dependent confor­mational rearrangements [J]. Cell, 2006, 127: 329-340.
[9] Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery [J]. Exp Biol Med(Maywood), 2003, 228: 111-133.
[10] Richter K, Soroka J, Skalniak L, et al. Conserved conforma­tional changes in the ATPase cycle of human Hsp90 [J]. J Biol Chem, 2008, 283: 17757-17765.
[11] Brinker A, Scheufler C, Von Der Mulbe F, et al. Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes [J]. J Biol Chem, 2002, 277: 19265-19275.
[12] Kosano H, Stensgard B, Charlesworth MC, et al. The assembly of progesterone receptor-Hsp90 complexes using purified proteins [J]. J Biol Chem, 1998, 273: 32973-32979.
[13] Marozkina NV, Yemen S, Borowitz M, et al. Hsp 70/Hsp 90 organizing protein as a nitrosylation target in cystic fibrosis therapy [J]. Proc Natl Acad Sci U S A, 2010, 107: 11393-11398.
[14] Eustace BK, Jay DG. Extracellular roles for the molecular chaperone, Hsp90 [J]. Cell Cycle, 2004, 3: 1098-1100.
[15] Erlich RB, Kahn SA, Lima FR, et al. STI1 promotes glioma proliferation through MAPK and PI3K pathways [J]. Glia, 2007, 55: 1690-1698.
[16] Wang TH, Chao A, Tsai CL, et al. Stress-induced phospho­protein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation [J]. Mol Cell Proteomics, 2010, 9: 1873-1884.
[17] MacLean M, Picard D. Cdc37 goes beyond Hsp90 and kinases [J]. Cell Stress Chaperones, 2003, 8: 114-119.
[18] Stepanova L, Yang G, DeMayo F, et al. Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia [J]. Oncogene, 2000, 19: 2186-2193.
[19] Gray PJ Jr, Stevenson MA, Calderwood SK. Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells [J]. Cancer Res, 2007, 67: 11942-11950.
[20] Schwarze SR, Fu VX, Jarrard DF. Cdc37 enhances prolifera­tion and is necessary for normal human prostate epithelial cell survival [J]. Cancer Res, 2003, 63: 4614-4619.
[21] Zhang T, Hamza A, Cao X, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells [J]. Mol Cancer Ther, 2008, 7: 162-170.
[22] El Hamidieh A, Grammatikakis N, Patsavoudi E. Cell surface Cdc37 participates in extracellular HSP90 mediated cancer cell invasion [J]. PLoS One, 2012, 7: e42722.
[23] McLaughlin SH, Smith HW, Jackson SE. Stimulation of the weak ATPase activity of human Hsp90 by a client protein [J]. J Mol Biol, 2002, 315: 787-798.
[24] Simpson NE, Lambert WM, Watkins R, et al. High levels of Hsp90 cochaperone p23 promote tumor progression and poor prognosis in breast cancer by increasing lymph node metastases and drug resistance [J]. Cancer Res, 2010, 70: 8446-8456.
[25] Oxelmark E, Knoblauch R, Arnal S, et al. Genetic dissection of p23, an Hsp90 cochaperone, reveals a distinct surface involved in estrogen receptor signaling [J]. J Biol Chem, 2003, 278: 36547-36555.
[26] Oxelmark E, Roth JM, Brooks PC, et al. The cochaperone p23 differentially regulates estrogen receptor target genes and promotes tumor cell adhesion and invasion [J]. Mol Cell Biol, 2006, 26: 5205-5213.
[27] Woo SH, An S, Lee HC, et al. A truncated form of p23 down-regulates telomerase activity via disruption of Hsp90 function [J]. J Biol Chem, 2009, 284: 30871-30880.
[28] Panaretou B, Siligardi G, Meyer P, et al. Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone aha1 [J]. Mol Cell, 2002, 10: 1307-1318.
[29] Holmes JL, Sharp SY, Hobbs S, et al. Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin [J]. Cancer Res, 2008, 68: 1188-1197.
[30] Okayama S, Kopelovich L, Balmus G, et al. p53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression [J]. J Biol Chem, 2014, 289: 6513-6525.
[31] Russell LC, Whitt SR, Chen MS, et al. Identification of conserved residues required for the binding of a tetratri­copeptide repeat domain to heat shock protein 90 [J]. J Biol Chem, 1999, 274: 20060-20063.
[32] Conde R, Xavier J, McLoughlin C, et al. Protein phosphatase 5 is a negative modulator of heat shock factor 1 [J]. J Biol Chem, 2005, 280: 28989-28996.
[33] Vaughan CK, Mollapour M, Smith JR, et al. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37 [J]. Mol Cell, 2008, 31: 886-895.
[34] Zhou G, Golden T, Aragon IV, et al. Ser/Thr protein phosphatase 5 inactivates hypoxia-induced activation of an apoptosis signal-regulating kinase 1/MKK-4/JNK signaling cascade [J]. J Biol Chem, 2004, 279: 46595-46605.
[35] von Kriegsheim A, Pitt A, Grindlay GJ, et al. Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5 [J]. Nat Cell Biol, 2006, 8: 1011-1016.
[36] Urban G, Golden T, Aragon IV, et al. Identification of an estrogen-inducible phosphatase(PP5)that converts MCF-7 human breast carcinoma cells into an estrogen-independent phenotype when expressed constitutively [J]. J Biol Chem, 2001, 276: 27638-27646.
[37] Golden T, Aragon IV, Rutland B, et al. Elevated levels of Ser/Thr protein phosphatase 5(PP5)in human breast cancer [J]. Biochim Biophys Acta, 2008, 1782: 259-270.
[38] Chinkers M. Protein phosphatase 5 in signal transduction [J]. Trends Endocrinol Metab, 2001, 12: 28-32.
[39] Yong W, Bao S, Chen H, et al. Mice lacking protein phosphatase 5 are defective in ataxia telangiectasia mutated(ATM)-mediated cell cycle arrest [J]. J Biol Chem, 2007, 282: 14690-14694.
[40] Quinta HR, Maschi D, Gomez-Sanchez C, et al. Subcellular rearrangement of Hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth [J]. J Neurochem, 2010, 115: 716-734.
[41] Paul I, Ahmed SF, Bhowmik A, et al. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity [J]. Oncogene, 2013, 32: 1284-1295.