药学学报, 2017, 52(7): 1110-1116
引用本文:
孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航. 细胞-纳米药物递送系统的研究进展[J]. 药学学报, 2017, 52(7): 1110-1116.
SUN Xuan-rong, ZHANG Long-chao, SHI Qi-wen, LI Han-bing, ZHAO Hang. Advance in research on cell-derived nanomedicine delivery system[J]. Acta Pharmaceutica Sinica, 2017, 52(7): 1110-1116.

细胞-纳米药物递送系统的研究进展
孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航
浙江工业大学, 长三角绿色制药协同创新中心, 浙江 杭州 310006
摘要:
细胞-纳米药物递送系统作为一种新型的药物载体平台,通过将细胞或细胞膜覆盖在纳米药物表面得到,这种药物载体综合了纳米粒与细胞的特点。以细胞作为载体,极大地提高了药物的生物相容性和靶向性,降低了毒副作用,并延长了药物在体内的循环时间。而且,该载药系统还具有对肿瘤和炎症等病灶的主动趋向能力。因此其在药物转运、肿瘤放射治疗和疫苗制备等方面都有所应用。本文综述了以红细胞、单核巨噬细胞、肿瘤细胞及细菌细胞作为药物载体的最新进展。
关键词:    细胞-纳米药物递送系统      细胞膜      纳米粒      红细胞      单核巨噬细胞系统      肿瘤细胞      细菌     
Advance in research on cell-derived nanomedicine delivery system
SUN Xuan-rong, ZHANG Long-chao, SHI Qi-wen, LI Han-bing, ZHAO Hang
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China
Abstract:
Nanoparticles hold great potential in the improvement of the therapeutic activities of many drugs. Synthetic approaches are dominant in the conventional approach for nanoparticles design and engineering strategies. However, combination of synthetic nanoparticles with natural biomaterials have recently gained much attention. By taking inspiration from nature, cell-derived nanomedicine delivery system has been created, which is a biomimetic platform consisting of a nanoparticulate core coated with cell or cell membrane. Compared to the conventional drug delivery systems, this novel system combines the unique functionalities of cells and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. With existing of cell, nanomedicine has significantly improved the biocompatibility, accurate delivery and long half-life in circulation as well as reduced the toxicity and side effect of drugs. Moreover, the delivery system can interact with the incredibly complex biological systems that exist within the body, such as actively targeting the inflammatory sites and tumors. Hence, it can be applied to drug delivery, tumor radiotherapy, and vaccine preparation. The cell-derived nanomedicine delivery system emerging as a novel delivery strategy, have the potential to significantly advance the nanomedicine to improve the therapeutic efficacy. The recent research in characteristics, preparation and application of erythrocyte, mononuclear phagocyte, bacteria and tumor cell as nanomedicine delivery carrier are reviewed.
Key words:    cell-derived nanomedicine delivery system    cell membrane    nanoparticle    erythrocyte    mononu­clear phagocyte system    tumor cell    bacteria   
收稿日期: 2017-03-16
DOI: 10.16438/j.0513-4870.2017-0226
基金项目: 国家自然科学基金资助项目(21506192);浙江省自然科学基金资助项目(LY16E030010)
通讯作者: 孙漩嵘,Tel:86-571-88871566,E-mail:sunxr@zjut.edu.cn
Email: sunxr@zjut.edu.cn
相关功能
PDF(303KB) Free
打印本文
0
作者相关文章
孙漩嵘  在本刊中的所有文章
张隆超  在本刊中的所有文章
施绮雯  在本刊中的所有文章
李汉兵  在本刊中的所有文章
赵航  在本刊中的所有文章

参考文献:
[1] Gao HL, Jiang XG. The progress of novel drug delivery systems [J]. Acta Pharm Sin(药学学报), 2017, 52: 181-188.
[2] Luk BT, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis [J]. ACS Appl Mater Interfaces, 2014, 6: 21859-21873.
[3] Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanopar­ticles: cost versus benefit of adding targeting and imaging capabilities [J]. Science, 2012, 338: 903-910.
[4] Kroll AV, Fang RH, Zhang L. Biointerfacing and applica­tions of cell membrane-coated nanoparticles [J]. Bioconju­gate Chem, 2017, 28: 23-32.
[5] Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery [J]. J Control Release, 2015, 220: 600-607.
[6] Désilets J, Lejeune A, Mercer J, et al. Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. fate of reinjected nanoerythrosomes [J]. Anticancer Res, 2001, 21: 1741-1747.
[7] Harisa GI, Badran MM, Alqahtani SA, et al. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer [J]. Saudi Pharm J, 2016, 24: 74-81.
[8] Shan Y, Wang H. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy [J]. Chem Soc Rev, 2015, 44: 3617-3638.
[9] Fang RH, Jiang Y, Fang JC, et al. Cell membrane-derived nanomaterials for biomedical applications [J]. Biomaterials, 2017, 128: 69-83.
[10] Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform [J]. Proc Natl Acad Sci U S A, 2011, 108: 10980-10985.
[11] Piao J, Wang L, Gao F, et al. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy [J]. Acs Nano, 2014, 8: 10414-10425.
[12] Hu CM, Fang RH, Luk BT, et al.'Marker-of-self' function­alization of nanoscale particles through a top-down cellular membrane coating approach [J]. Nanoscale, 2013, 5: 2664-2668.
[13] Rao L, Xu JH, Cai B, et al. Synthetic nanoparticles camou­flaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake [J]. Nanotechnology, 2016, 27: 085106.
[14] Rao L, Bu LL, Xu JH, et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance [J]. Small, 2015, 11: 6225-6236.
[15] Luk BT, Fang RH, Hu CM, et al. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors [J]. Theranostics, 2016, 6: 1004-1011.
[16] Rao L, Meng Q, Huang Q, et al. Photocatalytic degradation of cell membrane coatings for controlled drug release [J]. Adv Healthc Mater, 2016, 5: 1420-1427.
[17] Su J, Sun H, Meng Q, et al. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetra­tion for simultaneously inhibiting growth and lung metastasis of breast cancer [J]. Adv Funct Mater, 2016, 26: 1243-1252.
[18] Gao W, Zhang L. Engineering red-blood-cell-membrane-coated nanoparticles for broad biomedical applications [J]. Aiche J, 2015, 61: 738-746.
[19] Wang F, Fang RH, Luk BT, et al. Nanoparticle-based anti­virulence vaccine for the management of methicillin-resistant Staphylococcus aureus skin infection [J]. Adv Funct Mater, 2016, 26: 1628-1635.
[20] Guo Y, Wang D, Song Q, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induc­tion of antitumor immunity against melanoma [J]. ACS Nano, 2015, 9: 6918-6933.
[21] Hu CJ, Fang RH, Luk BT, et al. Nanoparticle-detained toxins for safe and effective vaccination [J]. Nat Nanotechnol, 2013, 8: 933-938.
[22] Fang RH, Hu CM, Chen KN, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles [J]. Nanoscale, 2013, 5: 8884-8888.
[23] Zhou H, Fan Z, Lemons PK, et al. A facile approach to func­tionalize cell membrane-coated nanoparticles [J]. Theranostics, 2016, 6: 1012-1022.
[24] Shi C, Pamer EG. Monocyte recruitment during infection and inflammation [J]. Nat Rev Immunol, 2011, 11: 762-774.
[25] Franklin RA, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages [J]. Science, 2014, 344: 921-925.
[26] Gordon S, Taylor PR. Monocyte and macrophage heteroge­neity [J]. Nat Rev Immunol, 2005, 5: 953-964.
[27] Batrakova EV, Gendelman HE, Kabanov AV. Cell-mediated drug delivery [J]. Expert Opin Drug Deliv, 2011, 8: 415-433.
[28] Miller CR, Bondurant B, McLean SD, et al. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes [J]. Biochemistry, 1998, 37: 12875-12883.
[29] Christian DA, Cai S, Garbuzenko OB, et al. Flexible fila­ments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage [J]. Mol Pharmaceutics, 2009, 6: 1343-1352.
[30] Zhou Z, Ma X, Jin E, et al. Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery [J]. Biomaterials, 2013, 34: 5722-5735.
[31] Li Z, Huang H, Tang S, et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy [J]. Biomaterials, 2016, 74: 144-154.
[32] Sun Q, Sun X, Ma X, et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs [J]. Adv Mater, 2014, 26: 7615-7621.
[33] Xuan M, Shao J, Dai L, et al. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy [J]. Acs Appl Mater Interfaces, 2016, 8: 9610-9618.
[34] Fu J, Wang D, Mei D, et al. Macrophage mediated biomi­metic delivery system for the treatment of lung metastasis of breast cancer [J]. J Control Release, 2015, 204: 11-19.
[35] Krishnamurthy S, Gnanasammandhan MK, Xie C, et al. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy [J]. Nanoscale, 2016, 8: 6981-6985.
[36] Tao Y, Ning M, Dou H. A novel therapeutic system for malignant glioma: nanoformulation, pharmacokinetic, and anti­cancer properties of cell-nano-drug delivery [J]. Nanomedi­cine, 2013, 9: 222-232.
[37] Brynskikh AM, Zhao Y, Mosley RL, et al. Macrophage delivery of thera-peutic nanozymes in a murine model of parkinson's disease [J]. Nanomedicine, 2010, 5: 379-396.
[38] Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer [J]. Technol Cancer Res Treat, 2004, 3: 33-40.
[39] Madsen SJ, Baek SK, Makkouk AR, et al. Macrophages as cell-based delivery systems for nanoshells in photothermal therapy [J]. Ann Biomed Eng, 2012, 40: 507-515.
[40] Madsen SJ, Christie C, Hong SJ, et al. Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment [J]. Lasers Med Sci, 2015, 30: 1357-1365.
[41] Thomas V, Halloran BA, Ambalavanan N, et al. In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris [J]. Acta Biomater, 2012, 8: 1939-1947.
[42] Nalla AK, Gogineni VR, Gupta R, et al. Suppression of uPA and uPAR blocks radiation-induced MCP-1 mediated recruitment of endothelial cells in meningioma [J]. Cell Signal, 2011, 23: 1299-1310.
[43] Angsantikul P, Thamphiwatana S, Gao W, et al. Cell membrane-coated nanoparticles as an emerging antibacterial vaccine platform [J]. Vaccines, 2015, 3: 814-828.
[44] Gao W, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles [J]. Nano Lett, 2015, 15: 1403-1409.
[45] Petros RA, Desimone JM. Strategies in the design of nanoparticles for therapeutic applications [J]. Nat Rev Drug Discov, 2010, 9: 615-627.
[46] Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors [J]. J Cell Biol, 2010, 188: 759-768.
[47] Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery [J]. J Drug Target, 2015, 23: 619-626.
[48] Fang RH, Hu CJ, Luk BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery [J]. Nano Lett, 2014, 14: 2181-2188.
[49] Zhu J, Zheng D, Zhang M, et al. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes [J]. Nano Lett, 2016, 16: 5895-5901.
[50] Sun H, Su J, Meng Q, et al. Cancer-cell-biomimetic nanopar­ticles for targeted therapy of homotypic tumors [J]. Adv Mater, 2016, 28: 9581-9588.
[51] Rao L, Bu L, Cai B, et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging [J]. Adv Mater, 2016, 28: 3460-3466.
[52] Chen Z, Zhao P, Luo Z, et al. Cancer cell membrane­biomimetic nanoparticles for homologous-targeting dualmodal imaging and photothermal therapy [J]. Acs Nano, 2016, 10: 10049-10057.
[53] Sun H, Su J, Meng Q, et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer [J]. Adv Funct Mater, 2017, 27: 1604300.
[54] Cheng H, Zhu J, Li S, et al. An O2 self-sufficient biomimetic nanoplat-form for highly specific and efficient photodynamic therapy [J]. Adv Funct Mater, 2016, 26: 7847-7860.
[55] Anselmo AC, Mitragotri S. Nanoparticles in the clinic [J]. Bioeng Translat Med, 2016, 1: 10-29.
相关文献:
1.王梦亮;常如波;刘滇生.金属细菌叶绿素的合成及其对肿瘤细胞的抑制作用金属细菌叶绿素的合成及其对肿瘤细胞的抑制作用[J]. 药学学报, 2005,40(10): 920-923
2.尹亚林;周尔风.甲基黄酮醇胺盐酸盐对β受体的阻断作用[J]. 药学学报, 1987,22(6): 465-467
3.孙亚丁;冯亦璞;曾贵云.北京鸭红细胞膜β肾上腺素受体放射配基结合测定法[J]. 药学学报, 1985,20(6): 405-411
4.冯亦璞;贾宏钧;张丽英;曾贵云.去甲乌药碱对火鸡红细胞膜β受体及腺苷环化酶活性的影响[J]. 药学学报, 1982,17(9): 641-646
5.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报,