药学学报, 2017, 52(11): 1667-1672
袁鹏, 郭晓辰, 张军平, 吕仕超, 朱亚萍. 外泌体作为中药载体的研究进展[J]. 药学学报, 2017, 52(11): 1667-1672.
YUAN Peng, GUO Xiao-chen, ZHANG Jun-ping, LÜ Shi-chao, ZHU Ya-ping. Research progress of the exosomes as drug delivery vehicles of Chinese herbal drugs [J]. Acta Pharmaceutica Sinica, 2017, 52(11): 1667-1672.

袁鹏1, 郭晓辰2, 张军平2, 吕仕超2, 朱亚萍2
1. 天津中医药大学 研究生院;
2. 天津中医药大学 第一附属医院, 天津 300193
关键词:    外泌体      药物载体      中草药      纳米技术      靶向性      生物有效性      难溶型药物     
Research progress of the exosomes as drug delivery vehicles of Chinese herbal drugs
YUAN Peng1, GUO Xiao-chen2, ZHANG Jun-ping2, LÜ Shi-chao2, ZHU Ya-ping2
1. Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China;
2. The First Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
As a new carrier of intercellular information, the exosomes is widely regarded as a natural drug carrier for its extensive distribution, non-immunity and targeting in human body. Chinese herbal drugs act at multiple targets and through different pathways in the prevention and treatment of diseases, but the preparation is relatively simple, there is a low solubility in the effective ingredients and low bioavailability, which limit the efficacy of the medicine. Using the new drug delivery approach of the exosomes, it is better to deliver the effective components to target cells. In this review, we reviewed the biological characteristics of exosomes and its application as a carrier of Chinese herbal drugs.
Key words:    exosome    drug carrier    Chinese herbal drug    nanotechnology    targeting    bioavailability    water-insoluble drug   
收稿日期: 2017-06-07
DOI: 10.16438/j.0513-4870.2017-0547
基金项目: 国家自然科学基金资助项目(81403217);第二批国家"万人计划"百千万工程领军人才资助.
通讯作者: 张军平
Email: tjzhtcm@163.com
PDF(230KB) Free
袁鹏  在本刊中的所有文章
郭晓辰  在本刊中的所有文章
张军平  在本刊中的所有文章
吕仕超  在本刊中的所有文章
朱亚萍  在本刊中的所有文章

[1] Couvreur P, Vauthier C. Nanotechnology:intelligent design to treat complex disease[J]. Pharm Res, 2006, 23:1417-1450.
[2] Alvarez-erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol, 2011, 29:341-345.
[3] Théry C, Zitvogel L, Amigorena S. Exosomes:composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2:569-579.
[4] Raposo G, Stoorvogel W. Extracellular vesicles:exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200:373-383.
[5] Simons M, Raposo G. Exosomes -vesicular carriers for intercellular communication[J]. Curr Opin Cell Biol, 2009, 21:575-581.
[6] Roucourt B, Meeussen S, Bao J, et al. Heparanase activates the syndecan-syntenin-alixexosome pathway[J]. Cell Res, 2015, 25:412-428.
[7] Müller G. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases[J]. Diabetes Metab Syndr Obes, 2012, 5:247-282.
[8] Li Z, Ma YY, Wang J, et al. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients[J]. Onco Targets Ther, 2016, 9:139-148.
[9] Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9:654-659.
[10] Filipazzi P, Bürdek M, Villa A, et al. Recent advances on the role of tumor exosomes in immunosuppression and disease progression[J]. Semin Cancer Biol, 2012, 22:342-349.
[11] Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21[J]. Stem Cells Transl Med, 2017, 6:209-222.
[12] Gao H, Jiang XG. The progress of novel drug delivery systems[J]. Acta Pharm Sin (药学学报), 2017, 52:181-188.
[13] Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release, 2015, 219:396-405.
[14] Wiklander OP, Nordin JZ, O'Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting[J]. J Extracell Vesicles, 2015, 20:26316.
[15] Shahabipour F, Barati N, Johnston TP, et al. Exosomes:nanoparticulate tools for RNA interference and drug delivery[J]. J Cell Physiol, 2017, 232:1660-1668.
[16] Fujita Y, Yoshioka Y, Ochiya T. Extracellular vesicle transfer of cancer pathogenic components[J]. Cancer Sci, 2016, 107:385-390.
[17] Taylor DD, Gercel-taylor C. Exosomes/microvesicles:mediators of cancer-associated immunosuppressive microenvironments[J]. Semin Immunopathol, 2011, 33:441-454.
[18] Yeo RW, Lai RC, Zhang B, et al. Mesenchymal stem cell:an efficient mass producer of exosomes for drug delivery[J]. Adv Drug Deliv Rev, 2013, 65:336-341.
[19] Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo[J]. Cancer Lett, 2012, 315:28-37.
[20] Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy[J]. J Control Release, 2015, 207:18-30.
[21] Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitiss[J]. Mol Ther, 2013, 21:1345-1357.
[22] Wang Q, Ren Y, Mu J, et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites[J]. Cancer Res, 2015, 75:2520-2529.
[23] Munagala R, Aqil F, Jeyabalan J, et al. Bovine milk-derived exosomes for drug delivery[J]. Cancer Lett, 2016, 371:48-61.
[24] Bryniarski K, Ptak W, Jayakumar A, et al. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microrna-150 to effector T cells to inhibit contact sensitivity[J]. J Allergy Clin Immunol, 2013, 132:170-181.
[25] Vashisht M, Rani P, Onteru SK, et al. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro[J]. Appl Biochem Biotechnol, 2017. DOI:10.1007/s12010-017-2478-4.
[26] Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomed Nanotechnol Biol Med, 2016, 12:655-664.
[27] Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins[J]. J Control Release, 2015, 205:35-44.
[28] Johnsen KB, Gudbergsson JM, Skov MN, et al. A compre-hensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy[J]. Biochim Biophys Acta, 2014, 1846:75-87.
[29] Sato YT, Umezaki K, Sawada S, et al. Engineering hybrid exosomes by membrane fusion with liposomes[J]. Sci Rep, 2016, 6:21933.
[30] Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models[J]. Nanomedicine, 2016, 11:2431-2441.
[31] Hall J, Prabhakar S, Balaj L, et al. Delivery of therapeutic proteins via extracellular vesicles:review and potential treatments for Parkinson's disease, glioma, and schwannoma[J]. Cell Mol Neurobiol, 2016, 36:417-427.
[32] Guo ZR. Development of artemisinin antimalarial drug[J]. Acta Pharm Sin (药学学报), 2016, 51:157-164.
[33] Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases[J]. Int J Biochem Cell Biol, 2009, 41:40-59.
[34] Anand P, Kunnumakkara AB, Newman RA, et al. Bioavail-ability of curcumin:problems and promises[J]. Mol Pharm, 2007, 4:807-818.
[35] Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system:the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes[J]. Mol Ther, 2010, 18:1606-1614.
[36] Taverna S, Fontana S, Monteleone F, et al. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21[J]. Oncotarget, 2016, 7:30420-30439.
[37] Chen J, Xu T, Chen C. The critical roles of miR-21 in anti-cancer effects of curcumin[J]. Ann Transl Med, 2015, 3:330.
[38] Canfrán-Duque A, Pastor O, Reina M, et al. Curcumin mitigates the intracellular lipid deposit induced by antipsychotics in vitro[J]. PLoS One, 2015, 10:e0141829.
[39] Kalani A, Kamat PK, Chaturvedi P, et al. Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia[J]. Life Sci, 2014, 107:1-7.
[40] Gelderblom H, Baker SD, Zhao M, et al. Distribution of paclitaxel in plasma and cerebrospinal fluid[J]. Anticancer Drugs, 2003, 14:365-368.
[41] Patel K, Patil A, Mehta M, et al. Oral delivery of paclitaxel nanocrystal (PNC) with a dual P-gp-CYP3A4 inhibitor:preparation, characterization and antitumor activity[J]. Int J Pharm, 2014, 472:214-223.
[42] Agrawal AK, Aqil F, Jeyabalan J, et al. Milk-derived exo-somes for oral delivery of paclitaxel[J]. Nanomed Nano-technol Biol Med, 2017, 13:1627-1636.
[43] Cai Q, Ma T, Li C, et al. Catalpolprotects pre-myelinating oligodendrocytes against ischemia-induced oxidative injury through ERK1/2 signaling pathway[J]. Int J Biol Sci, 2016, 12:1415-1426.
[44] Zhang XY, Zheng H, Wang YQ, et al. Protective effects of catalpol exosomes on damaged SH-SY5Y cells induced by low serum medium[J]. Global Tradit Chin Med (环球中医药), 2017, 10:155-158.
[45] Jiang Z, Jacob JA, Loganathachetti DS, et al. β-Elemene:mechanistic studies on cancer cell interaction and its chemosensitization effect[J]. Front Pharmacol, 2017, 8:105.
[46] Gong M, Liu Y, Zhang J, et al. β-Elemene inhibits cell proliferation by regulating the expression and activity of topoisomerases I and Ⅱα in human hepatocarcinoma HepG-2 cells[J]. Biomed Res Int, 2015, 2015:153987.
[47] Zhang J, Zhang HD, Chen L, et al. β-Elemene reverses chemoresistance of breast cancer via regulating MDR-related microRNA expression[J]. Cell Physiol Biochem, 2014, 34:2027-2037.
[48] Guo HQ, Zhang GN, Wang YJ, et al. β-Elemene, a com-pound derived from Rhizoma zedoariae, reverses multidrug resistance mediated by the ABCB1 transporter[J]. Oncol Rep, 2014, 31:858-866.
[49] Papa A,Wan L, Bonora M, et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function[J]. Cell, 2014, 157:595-610.
[50] Zhang J, Zhang HD, Yao YF, et al. β-Elemene reverses chemoresistance of breast cancer cells by reducing resistance transmission via exosomes[J]. Cell Physiol Biochem, 2015, 36:2274-2286.
[51] Ma J, Dey M, Yang H, et al. Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii[J]. Phytochemistry, 2007, 68:1172-1178.
[52] Aqil F, KausarH, Agrawal AK, et al. Exosomal formulation enhances therapeutic response of celastrol against lung can-cer[J]. Exp Mol Pathol, 2016, 101:12-21.
[53] Yang J, Gao F, Zhang Y, et al. Buyanghuanwu decoction (BYHWD) enhances angiogenic effect of mesenchymal stem cell by upregulating VEGF expression after focal cerebral ischemia[J]. J Mol Neurosci, 2015, 56:898-906.
[54] Chen GH, Yang YJ, Jiang LP, et al. Cardiomyocytes pre-treated with Tongxinluo can increase the phosphorylation of p70S6K1 through the exosomes and reduce the hypoxia/reoxygenation injury of its co-cultured endothelial cells[J]. Chin Circulat J (中国循环杂志), 2016, 31:29-30.
[55] Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes:current perspectives and future challenges[J]. Acta Pharm Sin B, 2016, 6:287-296.
[56] Morse MA, Garst J, Osada T, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer[J]. J Transl Med, 2005, 3:9.