药学学报, 2018, 53(1): 47-53
引用本文:
杨丽萍, 曹丽, 赵婷, 杜青, 曹德英, 向柏, 谢俊霞. 多功能信封型纳米系统的研究进展[J]. 药学学报, 2018, 53(1): 47-53.
YANG Li-ping, CAO Li, ZHAO Ting, DU Qing, CAO De-ying, XIANG Bai, XIE Jun-xia. The progress of multifunctional envelope-type nano device[J]. Acta Pharmaceutica Sinica, 2018, 53(1): 47-53.

多功能信封型纳米系统的研究进展
杨丽萍1, 曹丽2, 赵婷1, 杜青1, 曹德英1, 向柏1, 谢俊霞3
1. 河北医科大学药学院, 河北 石家庄 050017;
2. 河北省人民医院药学部, 河北 石家庄 050051;
3. 河北化工医药职业技术学院制药系, 河北 石家庄 050026
摘要:
基因治疗的关键是将目的基因递送至靶标,因此安全高效的基因载体尤为重要。多功能信封型纳米系统是一种新型基因载体系统,具有包封率高、稳定性好、转染率高和易制备等优点,能够控制核酸物质(小干扰RNA、DNA)在细胞内的输送与分布,使目的基因在特定地点发挥疗效,在基因递送方面具有显著优势。此外,该纳米递送系统在蛋白/多肽类成分的运载方面也显示出巨大的潜力。本文对近年来多功能信封型纳米系统的研究进展进行概述。
关键词:    多功能信封型纳米系统      基因载体      小干扰RNA      DNA      多肽     
The progress of multifunctional envelope-type nano device
YANG Li-ping1, CAO Li2, ZHAO Ting1, DU Qing1, CAO De-ying1, XIANG Bai1, XIE Jun-xia3
1. School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
2. Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China;
3. Department of Pharmaceutical, Hebei Chemical and pharmaceutical College, Shijiazhuang 050026, China
Abstract:
The key of gene therapy is to deliver the functional gene to the target tissue in the body. The safe and efficient gene carrier is particularly important in the targeted delivery. Multifunctional envelope-type nano device (MEND), based on concept "Programmed packaging", is a new type of gene carrier system, with high encapsulation efficiency, favourable stability, high transfection efficiency, easy preparation, etc. MEND is designed to control intracellular trafficking as well as the tissue distribution of encapsulated compounds such as nucleic acids/proteins/peptides, permitting them to function at the appropriate location. In this paper, research progresses in MEND are reviewed in accordance with three types of payloads:the small interfering RNA (siRNA), DNA and proteins/peptides in recent years.
Key words:    multifunctional envelope-type nano device    gene vector    siRNA    DNA    peptides   
收稿日期: 2017-07-23
DOI: 10.16438/j.0513-4870.2017-0724
基金项目: 国家自然科学基金资助项目(81773666,81302725);河北省自然科学基金资助项目(H2015206356,H2018206251,H2018206046);河北省高等学校科学技术研究项目(Z2014155).
通讯作者: 向柏,Tel:86-311-86265591,Fax:86-311-86266050,E-mail:baixiang@hebmu.edu.cn;谢俊霞,Tel:86-311-85110196,E-mail:xiejx666@126.com
Email: baixiang@hebmu.edu.cn;xiejx666@126.com
相关功能
PDF(330KB) Free
打印本文
0
作者相关文章
杨丽萍  在本刊中的所有文章
曹丽  在本刊中的所有文章
赵婷  在本刊中的所有文章
杜青  在本刊中的所有文章
曹德英  在本刊中的所有文章
向柏  在本刊中的所有文章
谢俊霞  在本刊中的所有文章

参考文献:
[1] Chira S, Jackson CS, Oprea I, et al. Progresses towards safe and efficient gene therapy vectors[J]. Oncotarget, 2015, 6:30675-30703.
[2] Kostarelos K, Miller AD. Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors[J]. Chem Soc Rev, 2005, 34:970-994.
[3] Mastrobattista E, van der Aa MA, Hennink WE, et al. Artificial viruses:a nanotechnological approach to gene delivery[J]. Nat Rev Drug Discov, 2006, 5:115-121.
[4] Kogure K, Moriguchi R, Sasaki K, et al. Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method[J]. J Control Release, 2004, 98:317-323.
[5] Nakamura Y, Kogure K, Futaki S, et al. Octaarginine-modified multifunctional envelope-type nano device for siRNA[J]. J Control Release, 2007, 119:360-367.
[6] Kamiya H, Akita H, Harashima H. Pharmacokinetic and pharmacodynamic considerations in gene therapy[J]. Drug Discov Today, 2003, 8:990-996.
[7] Hama S, Akita H, Iida S, et al. Quantitative and mecha-nism-based investigation of post-nuclear delivery events between adenovirus and lipoplex[J]. Nucleic Acids Res, 2007, 35:1533-1543.
[8] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391:806-811.
[9] Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect:a strategy for overcoming the PEG dilemma[J]. Adv Drug Deliver Rev, 2011, 63:152-160.
[10] Zhang D, Xu H, Hu MN, et al. "PEG dilemma" for liposomes and its solving approaches[J]. Acta Pharm Sin (药学学报), 2015, 50:252-260.
[11] Hatakeyama H, Akita H, Kogure K, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid[J]. Gene Ther, 2007, 14:68-77.
[12] Hatakeyama H, Akita H, Ito E, et al. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid[J]. Biomaterials, 2011, 32:4306-4316.
[13] Yung BC, Li J, Zhang M, et al. Lipid nanoparticles com-posed of quaternary amine-tertiary amine cationic lipid combination (QTsome) for therapeutic delivery of antimiR-21 for lung cancer[J]. Mol Pharm, 2016, 13:653-662.
[14] Rathore R, Chandra Sekhar Jaggarapu MM, Ganguly A, et al. Cationic lipid-conjugated hydrocortisone as selective antitumor agent[J]. Eur J Med Chem, 2016, 108:309-321.
[15] Kusumoto K, Akita H, Ishitsuka T, et al. Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium[J]. ACS Nano, 2013, 7:7534-7541.
[16] Kusumoto K, Akita H, Santiwarangkool S, et al. Advantages of ethanol dilution method for preparing GALA-modified liposomal siRNA carriers on the in vivo gene knockdown efficiency in pulmonary endothelium[J]. Int J Pharm, 2014, 473:144-147.
[17] Sato Y, Hatakeyama H, Sakurai Y, et al. A pH-sensitive cationic lipid facilitates the delivery ofliposomal siRNA and gene silencing activity in vitro and in vivo[J]. J Control Release, 2012, 163:267-276.
[18] Sakurai Y, Hatakeyama H, Akita H, et al. Improvement of doxorubicin efficacy using liposomal anti-polo-likekinase 1 siRNA in human renal cell carcinomas[J]. Mol Pharm, 2014, 11:2713-2719.
[19] Shen L, Evel-Kabler K, Strube R, et al. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity[J]. Nat Biotechnol, 2004, 22:1546-1553.
[20] Warashina S, Nakamura T, Sato Y, et al. A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells[J]. J Control Release, 2016, 225:183-191.
[21] Nakamura T, Kuroi M, Fujiwara Y, et al. Small-sized, stable lipid nanoparticle for the efficient delivery of siRNA to human immune cell lines[J]. Sci Rep, 2016, 6:37849.
[22] Yamamoto N, Sato Y, Munakata T, et al. Novel pH-sensitive multifunctional envelope-type nanodevice for siRNA-based treatments for chronic HBV infection[J]. J Hepatol, 2016, 64:547-555.
[23] Sato Y, Sakurai Y, Kajimoto K, et al. Innovative technologies in nanomedicines:from passive targeting to active targeting/from controlled pharmacokinetics to controlled intracellular pharmacokinetics[J]. Macromol Biosci, 2017. DOI:10.1002/mabi.201600179.
[24] Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging[J]. Mol Pharm, 2006, 3:472-487.
[25] Sakurai Y, Hatakeyama H, Sato Y, et al. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system[J]. J Control Release, 2014, 173:110-118.
[26] Brunner S, Sauer T, Carotta S, et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus[J]. Gene Ther, 2000, 7:401-407.
[27] Wilke M, Fortunati E, van den Broek M, et al. Efficacy of a peptide-based gene delivery system depends on mitotic activity[J]. Gene Ther, 1996, 3:1133-1142.
[28] Fan B, Jin MJ, Huang W, et al. The development of cell-penetrating peptides in drug delivery system[J]. Acta Pharm Sin (药学学报), 2016, 51:264-271.
[29] Monsigny M, Rondanino C, Duverger E, et al. Glyco-dependent nuclear import of glycoproteins, glycoplexes and glycosylated plasmids[J]. Biochim Biophys Acta, 2004, 1673:94-103.
[30] Rondanino C, Bousser MT, Monsigny M, et al. Sugar-dependent nuclear import of glycosylated proteins in living cells[J]. Glycobiology, 2003, 13:509-519.
[31] Niikura K, Sekiguchi S, Nishio T, et al. Oligosaccharide-mediated nuclear transport of nanoparticles[J]. ChemBio-Chem, 2008, 9:2623-2627.
[32] Akita H, Masuda T, Nishio T, et al. Improving in vivo hepatic transfection activity by controlling intracellular trafficking:the function of GALA and maltotriose[J]. Mol Pharm, 2011, 8:1436-1442.
[33] Wyman TB, Nicol F, Zelphati O, et al. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers[J]. Biochemistry, 1997, 36:3008-3017.
[34] Miura N, Shaheen SM, Akita H, et al. A KALA-modified lipid nanoparticle containing CpG-free plasmid DNA as a potential DNA vaccine carrier for antigen presentation and as an immune-stimulative adjuvant[J]. Nucleic Acids Res, 2015, 43:1317-1331.
[35] Akita H, Kudo A, Minoura A, et al. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process[J]. Biomaterials, 2009, 30:2940-2949.
[36] Shaheen SM, Akita H, Nakamura T, et al. KALA-modified multi-layered nanoparticles as gene carriers for MHC class-I mediated antigen presentation for a DNA vaccine[J]. Biomaterials, 2011, 32:6342-6350.
[37] Hyodo M, Sakurai Y, Akita H, et al. "Programmed packag-ing" for gene delivery[J]. J Control Release, 2014, 193:316-323.
[38] Akita H, Ishiba R, Hatakeyama H, et al. A neutral enve-lope-type nanoparticle containing pH-responsive and SS-cleavable lipid-like material as a carrier for plasmid DNA[J]. Adv Healthc Mater, 2013, 2:1120-1125.
[39] Tanaka H, Akita H, Ishiba R, et al. Neutral biodegradable lipid-envelope-type nanoparticle using vitamin A-scaffold for nuclear targeting of plasmid DNA[J]. Biomaterials, 2014, 35:1755-1761.
[40] Kolonin MG, Saha PK, Chan L, et al. Reversal of obesity by targeted ablation of adipose tissue[J]. Nat Med, 2004, 10:625-632.
[41] Kajimoto K, Sato Y, Nakamura T, et al. Multifunctional envelope-type nano device for controlled intracellular trafficking and selective targeting in vivo[J]. J Control Release, 2014, 190:593-606.
[42] Song XT, Evel-Kabler K, Shen L, et al. A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression[J]. Nat Med, 2008, 14:258-265.
[43] Yamada Y, Akita H, Kamiya H, et al. MITO-Porter:a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion[J]. Biochim Biophys Acta, 2008, 1778:423-432.
[44] Yamada Y, Fukuda Y, Harashima H. An analysis of mem-brane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles[J]. Mitochondrion, 2015, 24:50-55.
[45] Yamada Y, Harashima H. Targeting the mitochondrial genome via a dual function MITO-Porter:evaluation of mtDNA levels and mitochondrial function[J]. Methods Mol Biol, 2015, 1265:123-133.
[46] Miura N, Akita H, Tateshita N, et al. Modifying antigen-encapsulating liposomes with KALA facilitates MHC class I antigen presentation and enhances anti-tumor effects[J]. Mol Ther, 2017, 25:1003-1013.