药学学报, 2018, 53(2): 210-219
引用本文:
吴丹, 高耀, 向欢, 邢婕, 韩雨梅, 秦雪梅, 田俊生. 基于网络药理学的柴胡抗抑郁作用机制研究[J]. 药学学报, 2018, 53(2): 210-219.
WU Dan, GAO Yao, XIANG Huan, XING Jie, HAN Yu-mei, QIN Xue-mei, TIAN Jun-sheng. Exploration into mechanism of antidepressant of Bupleuri radix based on network pharmacology[J]. Acta Pharmaceutica Sinica, 2018, 53(2): 210-219.

基于网络药理学的柴胡抗抑郁作用机制研究
吴丹1,2, 高耀1,2, 向欢3, 邢婕1,2, 韩雨梅3, 秦雪梅1,2, 田俊生1,2
1. 山西大学中医药现代研究中心, 山西 太原 030006;
2. 山西大学地产中药功效物质研究与利用山西省重点实验室, 山西 太原 030006;
3. 山西大学体育学院, 山西 太原 030006
摘要:
构建柴胡活性成分-作用靶点网络和蛋白相互作用网络,对靶点涉及的功能和通路进行分析,探讨柴胡抗抑郁的作用机制。通过TCMSP数据库、文献挖掘和本实验室已有研究获取柴胡主要活性成分,利用DRAR-CPI服务器、GeneCards和OMIM数据库预测和筛选柴胡活性成分抗抑郁的作用靶点。采用Cytoscape软件构建活性成分-作用靶点网络,采用String数据库和Cytoscape软件绘制蛋白相互作用网络,通过SystemsDock Web Site对成分与靶点进行分子对接验证。采用DAVID数据库对靶点进行GO及KEGG通路分析,通过DisGeNET数据库对靶点所属的类型进行归属。筛选得到柴胡15个活性成分,涉及50个作用靶点。网络分析结果表明,柴胡主要涉及细胞过程、代谢过程、对应激的应答等生物过程,通过调节PI3K-AKT、MAPK、Rap1、Ras、FoxO和neurotrophin等信号通路来发挥抗抑郁作用。本研究体现了柴胡多成分-多靶点-多途径的作用特点,为进一步开展柴胡抗抑郁作用机制的研究提供了新思路和新方法。
关键词:    柴胡      抑郁症      网络药理学      分子对接      作用靶点      蛋白相互作用     
Exploration into mechanism of antidepressant of Bupleuri radix based on network pharmacology
WU Dan1,2, GAO Yao1,2, XIANG Huan3, XING Jie1,2, HAN Yu-mei3, QIN Xue-mei1,2, TIAN Jun-sheng1,2
1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China;
2. Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan 030006, China;
3. School of Physical Education, Shanxi University, Taiyuan 030006, China
Abstract:
This study was designed to explore the antidepressant mechanism of Bupleuri radix through establishing the active components-targets network and protein interactions network and analyzing the functions and pathways of targets. The main active ingredients of Bupleuri radix were obtained by TCMSP, literature study and the results of our own work. Based on the DRAR-CPI, GeneCards and OMIM were used to predict and screen the active components of Bupleuri radix. The Cytoscape software was used to construct the active components-targets network of Bupleuri radix. The protein interactions network was constructed using the String database and Cytoscape software. The relation of the main active ingredients and targets were validated by Systems Dock Web Site. The GO and KEGG pathways involved in the targets were analyzed by DAVID. Using DisGeNET database to attribute the type of targets. The results showed that 15 active components and 50 targets of Bupleuri radix were involved. The network results showed that the process of metabolism, regulation and response to stress were mainly involved, by adjusting the PI3K-AKT, MAPK, Rap1, Ras, FoxO, neurotrophin and other signaling pathways to play its antidepressant effect. This study reflects the characteristics of multicomponents-multi-targets and multi-pathways of Bupleuri radix, which provides new ideas and clues for further research on the mechanism of anti-depressive effects of Bupleuri radix.
Key words:    Bupleuri radix    depression    network pharmacology    molecular docking    target    protein interaction   
收稿日期: 2017-09-14
DOI: 10.16438/j.0513-4870.2017-0914
基金项目: 中国博士后科学基金面上资助项目(2016M602414);山西省科技重点研发计划(201603D3113013,201603D321077,201701D22111344);地产中药功效物质研究与利用山西省重点实验室项目(201605D111004);山西省科技创新重点团队项目(201605D131045-18).
通讯作者: 田俊生,Tel:86-351-7019297,E-mail:jstian@sxu.edu.cn;秦雪梅,Tel:86-351-7018379,E-mail:qinxm@sxu.edu.cn
Email: jstian@sxu.edu.cn;qinxm@sxu.edu.cn
相关功能
PDF(480KB) Free
打印本文
0
作者相关文章
吴丹  在本刊中的所有文章
高耀  在本刊中的所有文章
向欢  在本刊中的所有文章
邢婕  在本刊中的所有文章
韩雨梅  在本刊中的所有文章
秦雪梅  在本刊中的所有文章
田俊生  在本刊中的所有文章

参考文献:
[1] Mokdad AH, Forouzanfar MH, Daoud F, et al. Global burden of diseases, injuries, and risk factors for young people's health during 1990-2013:a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2016, 387:2383-2401.
[2] Ferrari AJ, Stockings E, Khoo JP, et al. The prevalence and burden of bipolar disorder:findings from the Global Burden of Disease Study 2013[J]. Bipolar Disord, 2016, 18:440-450.
[3] Thompson SM, Kallarackal AJ, Kvarta MD, et al. An excitatory synapse hypothesis of depression[J]. Trends Neurosci, 2015, 38:279-294.
[4] Marie NG, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013:a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2014, 384:766-781
[5] Aleman A, Denys D. A road map for suicide research and prevention[J]. Nature, 2014, 509:421-423.
[6] Zhang Y, Chen YX, Huang SJ. Research status of radix Bupleuri and radix Bupleuri compounds in antidepression[J]. World J Integr Tradit West Med (世界中西医结合杂志), 2014, 9:985-988.
[7] Chinese Pharmacopoeia Commission. Pharmacopoeia of the Perple's Republic of China (中华人民共和国药典)[S]. Part 1. 2015ed. Beijing:China Medical Science Press, 2015:280.
[8] Li X, Gong WX, Zhou YZ, et al. Research progress on antidepressive active ingredients of Xiaoyaosan and their mechanism[J]. Chin Tradit Herb Drugs (中草药), 2015, 46:3109-3116.
[9] Tian W, Zhen YQ, Cao WL, et al. Simultaneous determination of saikosaponin a,b1,b2 and c in radix Bupleuri formula granules by HPLC-MS/MS[J]. Chin Pharm J (中国药学杂志), 2016, 51:2068-2071.
[10] Jiang H, Li J, Shi RB, et al. Influence of processing on four saikosaponins in radix Bupleuri[J]. Chin Pharm J (中国药学杂志), 2009, 44:1618-1621.
[11] Paulke A, Nöldner M, Schubert-Zsilavecz M, et al. St. John's wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses[J]. Die Pharmazie, 2008, 63:296-302.
[12] Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, et al. A review on the dietary flavonoid kaempferol[J]. Mini Rev Med Chem, 2011, 11:298-344.
[13] Chen QY, Gan X. The protective effect of quercetin on the cultured PC12 cells lesioned by corticosterone[J]. Chem Bioeng (化学与生物工程), 2009, 26:47-49.
[14] Fang Y, Zhang F, Liu JL, et al. Isolation and quantitative determination of polyacetylenes in Bupleuri radix[J]. Chin Tradit Herb Drugs (中草药), 2015, 46:2365-2370.
[15] Fang Y. Studies on the Chemical Constituents and Antidepression Activity of the Petroleum Ether Fraction of Radix[D]. Taiyuan:Shanxi Univ, 2016.
[16] Liu JL, Fang Y, Yang L, et al. A qualitative, and quantitative determination and pharmacokinetic study of four polyacetylenes from radix Bupleuri by UPLC-PDA-MS[J]. J Pharm Biomed Anal, 2015, 111:257-265.
[17] Hopkins AL. Network pharmacology:the next paradigm in drug discovery[J]. Nat Chem Biol, 2008, 4:682-690.
[18] Liu AL, Du GH. Network pharmacology:new guidelines for drug discovery[J]. Acta Pharm Sin (药学学报), 2010, 45:1472-1477.
[19] Wang YH, Yang L. Systems pharmacology-based research framework of traditional Chinese medicine[J]. World Chin Med (世界中医药), 2013, 8:801-808.
[20] Ding F, Tan A, Ju W, et al. The prediction of key cytoskeleton components involved in glomerular diseases based on a proteinprotein interaction network[J]. PLoS One, 2016, 11:e0156024.
[21] Zhang Y, Mao X, Guo Q, et al. Pathway of PPAR-γ coactivators in thermogenesis:a pivotal traditional Chinese medicine-associated target for individualized treatment of rheumatoid arthritis[J]. Oncotarget, 2016, 7:15885.
[22] Chen JL, Gao Y, Qin XM, et al. Anti-depression mechanism of supercritical CO2 extract from Compound Chaigui Fang based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2016, 51:388-395.
[23] Zhang X, Gao Y, Xiang H, et al. An exploration on mechanism of antidepression of Jiaotai Pills based on network pharmacology[J]. Chin Tradit Herb Drugs (中草药), 2017, 48:1584-1590.
[24] Sun LM, Liu LF, Zhu HX, et al. Network pharmacologybased study on intervention mechanism of Huanglian Jiedu decoction in the treatment of Alzheimer's disease[J]. Acta Pharm Sin (药学学报), 2017, 52:1268-1275.
[25] Luo H, Chen J, Shi L, et al. DRAR-CPI:a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome[J]. Nucleic Acids Res, 2011, 39:W492-W498.
[26] Von Mering C, Jensen LJ, Snel B, et al. STRING:known and predicted protein-protein associations, integrated and transferred across organisms[J]. Nucleic Acids Res, 2005, 33:D433-D437.
[27] Hsin KY, Matsuoka Y, Asai Y, et al. systemsDock:a web server for network pharmacology-based prediction and analysis[J]. Nucleic Acids Res, 2016, 44:W507-W513.
[28] Dennis G, Sherman BT, Hosack DA, et al. DAVID:database for annotation, visualization, and integrated discovery[J]. Genome Biol, 2003, 4:R60.
[29] Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8:e83922.
[30] Liu SQ, Wang SL, Gao XL, et al. Variation of saponins in radix Bupleuri during decoction process[J]. Tradit Chin Drug Res Clin Pharm (中药新药与临床药理), 2013, 24:602-606.
[31] Sun HM. Chemical and Pharmacological Comparison of Raw and Vinegar-baked Radix Bupleuri[D]. Taiyuan:Shanxi Univ (山西大学), 2015.
[32] Li XM, Xu SX, Zhou ZQ, et al. Effects of neurotrophic factors in depression[J]. Pharm Clin Res (药学与临床研究), 2012, 20:52-55.
[33] Yu ZH, Cai M, Xiang J, et al. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats[J]. J Ethnopharmacol, 2016, 181:8-19.
[34] Shen C, Tsimberg Y, Salvadore C, et al. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions[J]. BMC Neurosci, 2004, 5:36.
[35] Wang F, Zhang C, Fang YR. Ras signaling pathway and neural plasticity mechanism of depression[J]. J Shanghai Jiaotong Univ Med Sci (上海交通大学学报(医学版)), 2015, 35:1556-1559.
[36] Wang H, Quirion R, Little PJ, et al. Forkhead box O transcription factors as possible mediators in the development of major depression[J]. Neuropharmacology, 2015, 99:527-537.
[37] Liang B, Moussaif M, Kuan CJ, et al. Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses[J]. Cell Metab, 2006, 4:429-440.
[38] Polter A, Yang S, Zmijewska AA, et al. Forkhead box, class O transcription factors in brain:regulation and behavioral manifestation[J]. Biol Psychiatry, 2009, 65:150-159.
相关文献:
1.黄友, 杨莎莎, 林夏, 赵生嘉, 魏馨怡, 傅超美, 张臻.基于网络药理-分子对接研究附子理中丸治疗溃疡性结肠炎的作用机制[J]. 药学学报, 2020,55(8): 1812-1822
2.郑一夫, 孔令雷, 贾皓, 张宝月, 王喆, 许律捷, 刘艾林, 杜冠华.基于系统的化合物-靶点相互作用预测模型的消栓通络方抗脑卒中网络药理学研究[J]. 药学学报, 2020,55(2): 256-264
3.吴昊, 王佳琪, 杨雨薇, 李天怡, 曹一佳, 曲玉霞, 靳玉洁, 张晨宁, 孙毅坤.基于网络药理学和分子对接技术初步探索“清肺排毒汤”抗新型冠状病毒肺炎作用机制[J]. 药学学报, 2020,55(3): 374-383
4.高凤凤, 裴艳玲, 任越, 陈紫军, 卢建秋, 张燕玲.基于网络药理学与分子对接技术研究黄精抗动脉粥样硬化的作用机制[J]. 药学学报, 2020,55(11): 2642-2650
5.田瑞, 李宇飞, 李莹倩, 郑继雯, 李华山.基于网络药理学探讨李氏溃结方治疗溃疡性结肠炎的分子机制[J]. 药学学报, 2020,55(11): 2657-2664
6.毛霞, 陈文佳, 李鹰飞, 李玮婕, 李泰贤, 王晓月, 郭敏群, 张彦琼, 林娜.基于网络药理学研究策略探究芍药苷对佐剂诱导型关节炎大鼠模型的治疗作用及其分子机制[J]. 药学学报, 2019,54(11): 2000-2010
7.庄莉, 翟园园, 姚卫峰, 徐佳, 冯丽, 包贝华, 曹雨诞, 张丽, 丁安伟.基于网络药理学的二至丸对肾脏保护作用的机制研究[J]. 药学学报, 2019,54(5): 877-885
8.李冰涛, 翟兴英, 李佳, 涂珺, 张启云, 徐国良, 黄丽萍, 邵峰, 朱卫丰, 刘荣华.基于网络药理学葛根解热作用机制研究[J]. 药学学报, 2019,54(8): 1409-1416
9.许海燕, 彭修娟, 陈衍斌, 许刚, 逯莉, 侯敏娜, 刘艳红, 刘峰, 许海玉.基于网络药理学的“柴胡−黄芩”药对治疗糖尿病的“理法−方药−成分−靶标−活性”关联研究[J]. 药学学报, 2018,53(9): 1414-1421
10.张王宁, 高耀, 李科, 钞建宾, 秦雪梅, 李爱平.基于网络药理学的黄芪总黄酮治疗肾病综合征的机制研究[J]. 药学学报, 2018,53(9): 1429-1441
11.时悦, 姚璎珈, 蔺莹, 梁喜才, 倪颖男, 吴雨桐, 杨静娴.基于网络药理学的开心散治疗阿尔茨海默病的作用机制分析[J]. 药学学报, 2018,53(9): 1458-1466
12.颜磊, 何小燕, 高耀, 向欢, 徐向平, 黄胜, 颜冬兰, 秦雪梅, 田俊生.基于网络药理学的驴胶补血颗粒升高白细胞作用机制研究[J]. 药学学报, 2018,53(10): 1660-1669
13.李磊, 图门巴雅尔, 李培锋, 刘畅, 李升和, 宁康健, 姜锦鹏.牛磺鹅去氧胆酸抗炎作用机制的网络药理学研究[J]. 药学学报, 2018,53(12): 2064-2075
14.孙莉敏, 刘丽芳, 朱华旭, 朱宝杰, 张启春.基于网络药理学的黄连解毒汤治疗阿尔兹海默症的作用机制研究[J]. 药学学报, 2017,52(8): 1268-1275
15.韩彦琪, 许浚, 张喜民, 张铁军, 任一杰, 刘昌孝.基于网络药理学的元胡止痛滴丸治疗原发性痛经的作用机制研究[J]. 药学学报, 2016,51(3): 380-387
16.陈建丽, 高耀, 秦雪梅, 田俊生.基于网络药理学的复方柴归方超临界CO2萃取组分的抗抑郁作用机制[J]. 药学学报, 2016,51(3): 388-395
17.高耀, 高丽, 高晓霞, 周玉枝, 秦雪梅, 田俊生.基于网络药理学的逍遥散抗抑郁活性成分作用靶点研究[J]. 药学学报, 2015,50(12): 1589-1595
18.程彬峰, 侯媛媛, 姜 民, 赵振营, 董林毅, 白 钢.基于网络药理学的清肺消炎丸抗炎机制的初步研究[J]. 药学学报, 2013,48(5): 686-693