药学学报, 2018, 53(3): 345-355
引用本文:
何贝轩, 郭丹丹, 贾鑫磊, 高越, 郭美丽. 昼夜节律钟调控花青素类成分的生物合成[J]. 药学学报, 2018, 53(3): 345-355.
HE Bei-xuan, GUO Dan-dan, JIA Xin-lei, GAO Yue, GUO Mei-li. Regulation of anthocyanin biosynthesis by circadian clock[J]. Acta Pharmaceutica Sinica, 2018, 53(3): 345-355.

昼夜节律钟调控花青素类成分的生物合成
何贝轩, 郭丹丹, 贾鑫磊, 高越, 郭美丽
第二军医大学药学院, 上海 200433
摘要:
花青素类成分作为植物次生代谢产物,不仅对于植物各种生命活动有重要意义,而且具有抗氧化、抗炎、抗菌、抗肿瘤、心脑血管保护等多种生理活性,是预防心脑血管疾病和代谢性疾病的一类重要天然产物。因此,探索花青素类成分的生物合成途径及调控机制,对于后续提高花青素类产量,寻找更高效率和低成本的生产方式具有重要意义。昼夜节律钟作为生物体内普遍存在的调控系统,不仅影响植物许多生理和分子过程,而且严格调控着花青素类成分的生物合成。本文综述了近年来昼夜节律钟对花青素类成分生物合成调控机制的研究进展,尝试为花青素类成分生物合成的进一步研究提供新的思路。
关键词:    昼夜节律钟      花青素      黄酮类化合物      生物合成     
Regulation of anthocyanin biosynthesis by circadian clock
HE Bei-xuan, GUO Dan-dan, JIA Xin-lei, GAO Yue, GUO Mei-li
School of Pharmacy, Second Military Medical University, Shanghai 200433, China
Abstract:
As a secondary metabolite in plant, anthocyanins plays an important role in many aspects of plant life, and also exhibits various activities including the anti-oxidation, anti-inflammatory, antibacterial, antitumor and cardio-cerebral vascular protective in animals. They are a group of important natural drug candiadtes in the prevention of cardiovascular and cerebrovascular diseases and metabolic diseases. Therefore, exploration of the biosynthetic pathway and regulatory mechanism of anthocyanins is of great interest for improvement of anthocyanin production and development of low-cost production methods. Circadian clock, as a ubiquitous regulatory system in organisms, affects plant physiological and molecular processes, and also regulate the anthocyanin biosynthesis. To provide new ideas on anthocyanin biosynthesis, we provide a review of the recent progress in circadian rhythm clock with regard on regulation of anthocyanin biosynthesis in this paper.
Key words:    circadian rhythm clock    anthocyanins    flavonoids    biosynthesis   
收稿日期: 2017-11-23
DOI: 10.16438/j.0513-4870.2017-1167
基金项目: 国家自然科学基金资助项目(81473300,81173484);国家“863”计划资助项目(2008AA02Z137).
通讯作者: 郭美丽,Tel:86-21-81871302,E-mail:mlguo@126.com;高越,E-mail:gaoyue2000@hotmail.com
Email: mlguo@126.com;gaoyue2000@hotmail.com
相关功能
PDF(316KB) Free
打印本文
0
作者相关文章
何贝轩  在本刊中的所有文章
郭丹丹  在本刊中的所有文章
贾鑫磊  在本刊中的所有文章
高越  在本刊中的所有文章
郭美丽  在本刊中的所有文章

参考文献:
[1] He J, Giusti MM. Anthocyanins:natural colorants with health-promoting properties[J]. Annu Rev Food Sci Technol, 2010, 1:163-187.
[2] Seeram NP, Momin RA, Nair MG, et al. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries[J]. Phytomedicine, 2001, 8:362-369.
[3] Hou DX, Yanagita T, Uto T, et al. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages:structure-activity relationship and molecular mechanisms involved[J]. Biochem Pharmacol, 2005, 70:417-425.
[4] Zhang H, Wang L, Deroles S, et al. New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals[J]. BMC Plant Biol, 2006, 6:29.
[5] Cisowska A, Wojnicz D, Hendrich AB. Anthocyanins as antimicrobial agents of natural plant origin[J]. Nat Prod Commun, 2011, 6:149-156.
[6] Naz S, Siddiqi R, Ahmad S, et al. Antibacterial activity directed isolation of compounds from Punica granatum[J]. J Food Sci, 2007, 72:M341-M345.
[7] Wallace TC, Slavin M, Frankenfeld CL. Systematic review of anthocyanins and markers of cardiovascular disease[J]. Nutrients, 2016, 8:32-45.
[8] Wang X, Ouyang YY, Liu J, et al. Flavonoid intake and risk of CVD:a systematic review and meta-analysis of prospective cohort studies[J]. Br J Nutr, 2014, 111:1-22.
[9] Perez-Garcia P, Ma Y, Yanovsky MJ, et al. Time-dependent sequestration of RVE8 by LNK proteins shapes the diurnal oscillation of anthocyanin biosynthesis[J]. Proc Natl Acad Sci USA, 2015, 112:5249-5253.
[10] Nagel DH, Kay SA. Complexity in the wiring and regulation of plant circadian networks[J]. Curr Biol, 2012, 22:R648- 657.
[11] Covington MF, Maloof JN, Straume M, et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development[J]. Genome Biol, 2008, 9:R130.
[12] Filichkin SA, Breton G, Priest HD, et al. Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules[J]. PLoS One, 2011, 6:e16907.
[13] Khan S, Rowe SC, Harmon FG. Coordination of the maize transcriptome by a conserved circadian clock[J]. BMC Plant Biol, 2010, 10:126.
[14] Feher B, Kozmabognar L, Kevei E, et al. Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana[J]. Plant J, 2011, 67:37-48.
[15] Wang ZY, Kenigsbuch D, Sun L, et al. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene[J]. Plant Cell, 1997, 9:491- 507.
[16] Locke JC, Millar AJ, Turner MS. Modelling genetic networks with noisy and varied experimental data:the circadian clock in Arabidopsis thaliana[J]. J Theor Biol, 2005, 234:383-393.
[17] Kikis EA, Khanna R, Quail PH. ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY[J]. Plant J, 2005, 44:300-313.
[18] Higuchi Y, Sumitomo K, Oda A, et al. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering[J]. J Plant Physiol, 2012, 169:1789-1796.
[19] Allen T, Koustenis A, Theodorou G, et al. Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock[J]. Plant Cell, 2006, 18:2506-2516.
[20] Louise N, Peter K, Paulina S, et al. Circadian and plastid signaling pathways are integrated to ensure correct expression of the CBF and COR genes during photoperiodic growth[J]. Plant Physiol, 2016, 171:1392-1406.
[21] Leivar P, Monte E. PIFs:systems integrators in plant development[J]. Plant Cell, 2014, 26:56-78.
[22] Soy J, Leivar P, Gonzalez-Schain N, et al. Molecular conver­gence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters[J]. Proc Natl Acad Sci USA, 2016, 113:4870-4875.
[23] Liu H, Wang Q, Liu Y, et al. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms[J]. Proc Natl Acad Sci USA, 2013, 110:17582-17587.
[24] Jarillo JA, Capel J, Tang RH, et al. An Arabidopsis circadian clock component interacts with both CRY1 and phyB[J]. Nature, 2001, 410:487-490.
[25] Baudry A, Ito S, Song YH, et al. F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression[J]. Plant Cell, 2010, 22:606-622.
[26] McWatters HG, Bastow RM, Hall A, et al. The ELF3 zeitnehmer regulates light signalling to the circadian clock[J]. Nature, 2000, 408:716-720.
[27] McClung CR, Davis SJ. Ambient thermometers in plants:from physiological outputs towards mechanisms of thermal sensing[J]. Curr Biol, 2010, 20:R1086-1092.
[28] Boikoglou E, Ma Z, von Korff M, et al. Environmental memory from a circadian oscillator:the Arabidopsis thaliana clock differentially integrates perception of photic vs. thermal entrainment[J]. Genetics, 2011, 189:655-664.
[29] Mizuno T, Nomoto Y, Oka H, et al. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana[J]. Plant Cell Physiol, 2014, 55:958-976.
[30] Wigge PA. Ambient temperature signalling in plants[J]. Curr Opin Plant Biol, 2013, 16:661-666.
[31] Helfer A, Nusinow DA, Chow BY, et al. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock[J]. Curr Biol, 2011, 21:126-133.
[32] Liu T, Carlsson J, Takeuchi T, et al. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7[J]. Plant J, 2013, 76:101-114.
[33] Gould PD, Locke JC, Larue C, et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock[J]. Plant Cell, 2006, 18:1177-1187.
[34] Salome PA, Weigel D, McClung CR. The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation[J]. Plant Cell, 2010, 22:3650-3661.
[35] Rawat R, Takahashi N, Hsu PY, et al. Reveille 8 and pseudo-reponse regulator 5 form a negative feedback loop within the Arabidopsis circadian clock[J]. PLoS Gen, 2011, 7:e1001350.
[36] Dubois M, Claeys H, Van den Broeck L, et al. Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought[J]. Plant Cell Environ, 2017, 40:180- 189.
[37] Boller T, Felix G. A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptor[J]. Annu Rev Plant Biol, 2009, 60:379-406.
[38] Felix G, Duran JD, Volko S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. Plant J, 1999, 18:265-276.
[39] Zhang C, Xie Q, Anderson RG, et al. Crosstalk between the circadian clock and innate immunity in Arabidopsis[J]. PLoS Pathogens, 2013, 9:e1003370.
[40] Vranova E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annu Rev Plant Biol, 2013, 64:665-700.
[41] Novakova M, Motyka V, Dobrev PI, et al. Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves[J]. J Exp Bot, 2005, 56:2877-2883.
[42] Hanano S, Domagalska MA, Nagy F, et al. Multiple phytohormones influence distinct parameters of the plant circadian clock[J]. Genes Cells, 2006, 11:1381-1392.
[43] Atamian HS, Harmer SL. Circadian regulation of hormone signaling and plant physiology[J]. Plant Mol Biol, 2016, 91:691-702.
[44] Locke JC, Kozma-Bognar L, Gould PD, et al. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana[J]. Mol Syst Biol, 2006, 2:59.
[45] Fu J, Yang L, Dai S. Conservation of Arabidopsis thaliana circadian clock genes in Chrysanthemum lavandulifolium[J]. Plant Physiol Biochem, 2014, 80:337-347.
[46] Carbonell-Bejerano P, Rodriguez V, Royo C, et al. Circadian oscillatory transcriptional programs in grapevine ripening fruits[J]. BMC Plant Biol, 2014, 14:78.
[47] Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, et al. Diurnal oscillations of soybean circadian clock and drought responsive genes[J]. PLoS One, 2014, 9:e86402.
[48] Matsuzaki J, Kawahara Y, Izawa T. Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions[J]. Plant Cell, 2015, 27:633-648.
[49] Banks JA, Nishiyama T, Hasebe M, et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants[J]. Science, 2011, 332:960-963.
[50] Farre EM, Harmer SL, Harmon FG, et al. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock[J]. Curr Biol, 2005, 15:47-54.
[51] Hayes KR, Beatty M, Meng X, et al. Maize global trans­criptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator[J]. PLoS One, 2010, 5:e12887.
[52] Nozue K, Fau CM, Fau DP, et al. Rhythmic growth explained by coincidence between internal and external cues[J]. Nature, 2007, 448:358-361.
[53] Yu JW, Rubio V, Lee NY, et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability[J]. Mol Cell, 2008, 32:617-630.
[54] Grundy J, Stoker C, Carre IA. Circadian regulation of abiotic stress tolerance in plants[J]. Front Plant Sci, 2015, 6:648.
[55] Choudhary MK, Nomura Y, Wang L, et al. Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic, and signaling pathways[J]. Mol Cell Proteomics, 2015, 14:2243-2260.
[56] Hichri I, Barrieu F, Bogs J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. J Exp Bot, 2011, 62:2465-2483.
[57] Chen CF, Li YD, Xu Z. Chemical principles and bioactivities of blueberry[J]. Acta Pharm Sin (药学学报), 2010, 45:422- 429.
[58] Jin JR, Hong H, Jin GY, et al. Anthocyanidin inhibits immunoglobulin E-mediated allergic response in mast cells[J]. Acta Pharm Sin (药学学报), 2012, 47:34-38.
[59] Koes R, Verweij W, Quattrocchio F. Flavonoids:a colorful model for the regulation and evolution of biochemical pathways[J]. Trends Plant Sci, 2005, 10:236-242.
[60] Tanaka Y, Ohmiya A. Seeing is believing:engineering antho­cyanin and carotenoid biosynthetic pathways[J]. Curr Opin Biotechnol, 2008, 19:190-197.
[61] Deikman J, Hammer PE. Induction of anthocyanin accumula­tion by cytokinins in Arabidopsis thaliana[J]. Plant Physiol, 1995, 108:47-57.
[62] Kim YB, Park SY, Thwe AA, et al. Metabolomic analysis and differential expression of anthocyanin biosynthetic genes in white-and red-flowered buckwheat cultivars (Fagopyrum esculentum)[J]. J Agric Food Chem, 2013, 61:10525- 10533.
[63] Takeuchi T, Newton L, Burkhardt A, et al. Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles[J]. J Exp Bot, 2014, 65:6003-6012.
[64] Liu Z, Zhang Y, Wang J, et al. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings[J]. Plant Sci, 2015, 238:64-72.
[65] Loyola R, Herrera D, Mas A, et al. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment[J]. J Exp Bot, 2016, 67:5429- 5445.
[66] Maier A, Schrader A, Kokkelink L, et al. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in antho­cyanin accumulation in Arabidopsis[J]. Plant J, 2013, 74:638-651.
[67] Fankhauser C. The phytochromes, a family of red/far-red absorbing photoreceptors[J]. J Biol Chem, 2001, 276:11453- 11456.
[68] Jenkins GI. Signal transduction in responses to UV-B radia­tion[J]. Annu Rev Plant Biol, 2009, 60:407-431.
[69] Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants[J]. Trends Plant Sci, 2012, 17:230-237.
[70] Ulm R, Baumann A, Oravecz A, et al. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis[J]. Proc Natl Acad Sci USA, 2004, 101:1397-1402.
[71] Brown BA, Cloix C, Jiang GH, et al. A UV-B-specific signaling component orchestrates plant UV protection[J]. Proc Natl Acad Sci USA, 2005, 102:18225-18230.
[72] Oravecz A, Baumann A, Mate Z, et al. Constitutively photomorphogenic1 is required for the UV-B response in Arabidopsis[J]. Plant Cell, 2006, 18:1975-1990.
[73] Stracke R, Favory JJ, Gruber H, et al. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation[J]. Plant Cell Environ, 2010, 33:88-103.
[74] Dooner HK, Robbins TP, Jorgensen RA. Genetic and deve­lopmental control of anthocyanin biosynthesis[J]. Annu Rev Genet, 1991, 25:173-199.
[75] Gonzalez A, Zhao M, Leavitt JM, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. Plant J, 2008, 53:814-827.
[76] Shi MZ, Xie DY. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana[J]. Recent Pat Biotechnol, 2014, 8:47-60.
[77] Pan Y, Michael TP, Hudson ME, et al. Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways[J]. Plant Physiol, 2009, 150:858-878.
[78] Das PK, Shin DH, Choi SB, et al. Sugar-hormone cross-talk in anthocyanin biosynthesis[J]. Mol Cells, 2012, 34:501- 507.
[79] Cominelli E, Gusmaroli G, Allegra D, et al. Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana[J]. J Plant Physiol, 2008, 165:886-894.
[80] Shin DH, Choi M, Kim K, et al. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis[J]. FEBS Lett, 2013, 587:1543-1547.
[81] Lee J, He K, Stolc V, et al. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development[J]. Plant Cell, 2007, 19:731-749.
[82] Zhang H, He H, Wang X, et al. Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation[J]. Plant J, 2011, 65:346-358.
[83] Chattopadhyay S, Ang LH, Puente P, et al. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression[J]. Plant Cell, 1998, 10:673-683.
[84] Wang H, Ma LG, Li JM, et al. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development[J]. Science, 2001, 294:154-158.
[85] Yang HQ, Tang RH, Cashmore AR. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1[J]. Plant Cell, 2001, 13:2573-2587.
[86] Seo HS, Watanabe E, Tokutomi S, et al. Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling[J]. Genes Dev, 2004, 18:617-622.
[87] Jang S, Marchal V, Panigrahi KC, et al. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response[J]. EMBO J, 2008, 27:1277-1288.
[88] Brown BA, Jenkins GI. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH[J]. Plant Physiol, 2008, 146:576-588.
[89] Favory JJ, Stec A, Gruber H, et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis[J]. EMBO J, 2009, 28:591-601.
[90] Dubos C, Le Gourrierec J, Baudry A, et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana[J]. Plant J, 2008, 55:940-953.
[91] Gou JY, Felippes FF, Liu CJ, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23:1512-1522.
[92] Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends Plant Sci, 2015, 20:176-185.
[93] Wang YL, Wang YQ, Song ZQ, et al. Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis[J]. Mol Plant, 2016, 9:1395-1405.
[94] Nguyen NH, Jeong CY, Kang GH, et al. MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis[J]. Plant J, 2015, 84:1192-1205.
[95] Toledo-Ortiz G, Johansson H, Lee KP, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription[J]. PLoS Gen, 2014, 10:e1004416.
[96] Osterlund MT, Hardtke CS, Wei N, et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis[J]. Nature, 2000, 405:462-466.
[97] Legris M, Nieto C, Sellaro R, et al. Perception and signalling of light and temperature cues in plants[J]. Plant J, 2017, 90:683-697.
[98] Hardtke CS, Gohda KF, Osterlund MF, et al. HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain[J]. EMBO J, 2000, 19:4997- 5006.
[99] Li S, Wang W, Gao J, et al. MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis[J]. Plant Cell, 2016, 28:2866-2883.
[100] Takshak S, Agrawal SB. Secondary metabolites and phenyl­propanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant[J]. J Photochem Photobiol B-Biol, 2014, 140:332-343.
[101] Lokhande SD, Ogawa K, Tanaka A, et al. Effect of temperature on ascorbate peroxidase activity and flowering of Arabidopsis thaliana ecotypes under different light conditions[J]. J Plant Physiol, 2003, 160:57-64.
[102] Nakamichi N, Kusano M, Fukushima A, et al. Transcript profiling of an Arabidopsis pseudo response regulator arrhythmic triple mutant reveals a role for the circadian clock in cold stress response[J]. Plant Cell Physiol, 2009, 50:447- 462.
[103] Zhang YQ, Zheng S, Liu ZJ, et al. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings[J]. J Plant Physiol, 2011, 168:367-374.
[104] Leivar P, Quail PH. PIFs:pivotal components in a cellular signaling hub[J]. Trends Plant Sci, 2011, 16:19-28.
[105] Lorrain S, Allen T, Duek PD, et al. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors[J]. Plant J, 2008, 53:312-323.
[106] Mizuno T, Nomoto Y, Oka H, et al. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana[J]. Plant Cell Physiol, 2014, 55:958-976.
[107] Catala R, Medina J, Salinas J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108:16475- 16480.
[108] Alabadi D, Gallego-Bartolome J, Orlando L, et al. Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness[J]. Plant J, 2008, 53:324- 335.
[109] Li K, Yu R, Fan LM, et al. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis[J]. Nat Commun, 2016, 7:11868.
[110] Wang K, Dickinson RE. Contribution of solar radiation to decadal temperature variability over land[J]. Proc Natl Acad Sci USA, 2013, 110:14877-14882.
[111] Osterlund MT, Wei N, Deng XW. The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development[J]. Plant Physiol, 2000, 124:1520-1524.
[112] Jang K, Lee HG, Jung SJ, et al. The E3 ubiquitin ligase COP1 regulates thermosensory flowering by triggering GI degradation in Arabidopsis[J]. Sci Rep, 2015, 5:12071.
[113] Legris M, Klose C, Burgie ES, et al. Phytochrome B integrates light and temperature signals in Arabidopsis[J]. Science, 2016, 354:897-900.
[114] Findlay KM, Jenkins GI. Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions[J]. Plant Cell Environ, 2016, 39:1706-1714.
[115] Miyazaki Y, Takase T, Kiyosue T. ZEITLUPE positively regulates hypocotyl elongation at warm temperature under light in Arabidopsis thaliana[J]. Plant Signaling Behav, 2015, 10:e998540.
[116] Zeng S, Wu M, Zou C, et al. Comparative analysis of anthocyanin biosynthesis during fruit development in two Lycium species[J]. Physiol Plant, 2014, 150:505-516.
[117] Huang W, Khaldun AB, Lv H, et al. Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum[J]. Plant Cell Rep, 2016, 35:883-894.
[118] Enoki S, Hattori T, Ishiai S, et al. Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues[J]. J Plant Physiol, 2017, 219:22-27.
[119] Wan L, Li B, Pandey MK, et al. Transcriptome analysis of a new peanut seed coat mutant for the physiological regulatory mechanism involved in seed coat cracking and pigmentation[J]. Front Plant Sci, 2016, 7:1491.
[120] Hu J, Chen G, Zhang Y, et al. Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod[J]. Plant Physiol Biochem, 2015, 97:304- 312.
[121] Dodd AN, Salathia N, Hall A, et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage[J]. Science, 2005, 309:630-633.
[122] Green RM, Tingay S, Wang ZY, et al. Circadian rhythms confer a higher level of fitness to Arabidopsis plants[J]. Plant Physiol, 2002, 129:576-584.
[123] Yerushalmi S, Yakir E, Green RM. Circadian clocks and adaptation in Arabidopsis[J]. Mol Ecol, 2011, 20:1155- 1165.