药学学报, 2018, 53(3): 356-374
引用本文:
霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳. 抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018, 53(3): 356-374.
HUO Zhi-peng, ZUO Xiao-fang, KANG Dong-wei, ZHAN Peng, LIU Xin-yong. Progress on AIDS drug targets and small molecule inhibitors[J]. Acta Pharmaceutica Sinica, 2018, 53(3): 356-374.

抗艾滋病药物新靶标及其小分子抑制剂的研究进展
霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
抗艾滋病药物的长期使用导致严重的耐药性和药物不良反应,以及难以根治等问题,迫使人们不断研发新的抗艾滋病药物。随着HIV-1致病机制和生物学特征的深入研究以及药物发现筛选技术的快速发展,新一代抗艾滋病药物靶标及其抑制剂被陆续发现,为艾滋病的治疗方案提供了新的选择。本综述精选近几年最具代表性的研究实例,从药物化学的视角总结了抗艾滋病药物新靶标及其小分子抑制剂的前沿进展。
关键词:    艾滋病      药物靶标      HIV-1      复制周期      小分子抑制剂      药物设计     
Progress on AIDS drug targets and small molecule inhibitors
HUO Zhi-peng, ZUO Xiao-fang, KANG Dong-wei, ZHAN Peng, LIU Xin-yong
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
The difficulty to eradicate the HIV-1, off-target effects together with the rapid emergence of multidrug-resistant strains have created an urgent need for more potent and less toxic therapies against other targets of HIV virus. From the point of view of medicinal chemistry, we summarizes and discusses current endeavours towards the discovery and development of novel inhibitors with various scaffolds or distinct mechanisms of action, and also provides examples illustrating new methodologies in medicinal chemistry that contribute to the identification of novel antiretroviral agents.
Key words:    AIDS    drug target    HIV-1    replication cycle    small molecule inhibitor    drug design   
收稿日期: 2017-11-27
DOI: 10.16438/j.0513-4870.2017-1176
基金项目: 国家自然科学基金资助项目(81420108027,81573347);2017年山东省重点研发计划(2017CXGC1401).
通讯作者: 展鹏,Tel:86-531-88380270,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
相关功能
PDF(1145KB) Free
打印本文
0
作者相关文章
霍志鹏  在本刊中的所有文章
左晓芳  在本刊中的所有文章
康东伟  在本刊中的所有文章
展鹏  在本刊中的所有文章
刘新泳  在本刊中的所有文章

参考文献:
[1] World Health Organization. HIV/AIDS[EB/OL]. 2017-06[2017-11]. http://www.who.int/mediacentre/factsheets/fs360/en/.
[2] Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy[J]. Cold Spring Harb Perspect Med, 2012, 2:a007161.
[3] Zhan P, Pannecouque C, De Clercq E, et al. Anti-HIV drug discovery and development:current innovations and future trends[J]. J Med Chem, 2016, 59:2849-2878.
[4] Siegel L, Gulick RM. New antiretroviral agents[J]. Curr Infect Dis Rep, 2007, 9:243-251.
[5] Liu T, Huang B, Zhan P, et al. Discovery of small molecular inhibitors targeting HIV-1 gp120-CD4 interaction drived from BMS-378806[J]. Eur J Med Chem, 2014, 86:481-490.
[6] Lin PF, Blair W, Wang T, et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding[J]. Proc Natl Acad Sci USA, 2003, 100:11013-11018.
[7] Wang T, Zhang Z, Wallace OB, et al. Discovery of 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806):a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions[J]. J Med Chem, 2003, 46:4236-4239.
[8] Regueiro-Ren A, Xue QM, Swidorski JJ, et al. Inhibitors of human immunodeficiency virus type 1(HIV-1) attachment. 12. Structure-activity relationships associated with 4-fluoro-6-azaindole derivatives leading to the identification of 1-(4-benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3] triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248)[J]. J Med Chem, 2013, 56:1656-1669.
[9] Lu L, Yu F, Cai L, et al. Development of small-molecule HIV entry inhibitors specifically targeting gp120 or gp41[J]. Curr Top Med Chem, 2016, 16:1074-1090.
[10] Pancera M, Lai YT, Bylund T, et al. Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529[J]. Nat Chem Biol, 2017, 13:1115-1122.
[11] Parker CG, Domaoal RA, Anderson KS, et al. An antibody-recruiting small molecule that targets HIV gp120[J]. J Am Chem Soc, 2009, 131:16392-16394.
[12] Madani N, Schön A, Princiotto AM, et al. Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120[J]. Structure, 2008, 16:1689-1701.
[13] Zhao Q, Ma L, Jiang S, et al. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4[J]. Virology, 2005, 339:213-215.
[14] Curreli F, Choudhury S, Pyatkin I, et al. Design, synthesis, and antiviral activity of entry inhibitors that target the CD4-binding site of HIV-1[J]. J Med Chem, 2013, 55:4764- 4775.
[15] Curreli F, Kwon YD, Zhang H, et al. Binding mode charac­terization of NBD series CD4-mimetic HIV-1 entry inhibitors by X-ray structure and resistance study[J]. Antimicrob Agents Chemother, 2014, 58:5478-5491.
[16] Lalonde JM, Lekhac M, Jones DM, et al. Structure-based design and synthesis of an HIV-1 entry inhibitor exploiting X-ray and thermodynamic characterization[J]. ACS Med Chem Lett, 2013, 4:338-343.
[17] Chaiken I, Rashad AA. Peptide triazole inactivators of HIV-1:how do they work and what is their potential?[J]. Future Med Chem, 2015, 7:2305-2310.
[18] Zhan, P, Chen X, Li D, et al. HIV-1 NNRTIs:structural diversity, pharmacophore similarity, and implications for drug design[J]. Med Res Rev, 2013, 33:E1-E72.
[19] El AH, Recordonpinson P, Tagajdid R, et al. Drug resistance mutations in HIV type 1 isolates from patients failing antiretroviral therapy in Morocco[J]. AIDS Res Hum Retroviruses, 2012, 28:944-948.
[20] Sirivolu VR, Vernekar SK, Ilina T, et al. Clicking 3'-azido­thymidine into novel potent inhibitors of human immunodefi­ciency virus[J]. J Med Chem, 2013, 56:8765-8780.
[21] Agarwal HK, Loethan K, Mandal D, et al. Synthesis and biological evaluation of fatty acyl ester derivatives of 2',3'-didehydro-2',3'-dideoxythymidine[J]. Bioorg Med Chem Lett, 2011, 21:1917-1921.
[22] Agarwal HK, Chhikara BS, Bhavaraju S, et al. Emtricitabine prodrugs with improved anti-HIV activity and cellular uptake[J]. Mol Pharm, 2013, 10:467-476.
[23] Liu C, Dumbre SG, Pannecouque C, et al. Amidate prodrugs of deoxythreosyl nucleoside phosphonates as dual inhibitors of HIV and HBV replication[J]. J Med Chem, 2016, 59:9513- 9531.
[24] Bollini M, Domaoal RA, Thakur VV, et al. Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents[J]. J Med Chem, 2011, 54:8582- 8591.
[25] Chan AH, Lee WG, Spasov KA, et al. Covalent inhibitors for eradication of drug-resistant HIV-1 reverse transcriptase:from design to protein crystallography[J]. Proc Natl Acad Sci U S A, 2017, 114:9725-9730.
[26] Kang D, Fang Z, Li Z, et al. Design, synthesis, and evalua­tion of thiophene[3,2-d]pyrimidine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors with significantly improved drug resistance profiles[J]. J Med Chem, 2016, 59:7991-8007.
[27] Kang D, Fang Z, Huang B, et al. Structure-based optimization of thiophene[3,2-d]pyrimidine derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors with improved potency against resistance-associated variants[J]. J Med Chem, 2017, 60:4424-4443.
[28] Wang X, Gao P, Menéndezarias L, et al. Update on recent developments in small molecular HIV-1 RNase H inhibitors (2013-2016):opportunities and challenges[J]. Curr Med Chem, 2017, 24:1-21.
[29] Vernekar SKV, Liu Z, Nagy E, et al. Design, synthesis, biochemical, and antiviral evaluations of C6 benzyl and C6 biarylmethyl substituted 2-hydroxylisoquinoline-1,3-diones:dual inhibition against HIV reverse transcriptase-associated RNase H and polymerase with antiviral activities[J]. J Med Chem, 2015, 58:651-664.
[30] Tang J, Liu F, Nagy E, et al. 3-Hydroxypyrimidine-2,4-diones as selective active site inhibitors of HIV reverse transcriptase-associated RNase H:design, synthesis, and biochemical evaluations[J]. J Med Chem, 2016, 59:2648-2659.
[31] Kankanala J, Kirby KA, Liu F, et al. Design, synthesis and biological evaluations of hydroxypyridone carboxylic acids as inhibitors of HIV reverse transcriptase-associated RNase H[J]. J Med Chem, 2016, 59:5051-5062.
[32] Cao L, Song W, De Clercq E, et al. Recent progress in the research of small molecule HIV-1 RNase H inhibitors[J]. Curr Med Chem, 2014, 21:1956-1967.
[33] Masaoka T, Chung S, Caboni P, et al. Exploiting drug-resistant enzymes as tools to identify thienopyrimidinone inhibitors of human immunodeficiency virus reverse transcriptase-associated ribonuclease H[J]. J Med Chem, 2013, 56:5436-5445.
[34] Kawasuji T, Johns BA, Yoshida H, et al. Carbamoyl pyridone HIV-1 integrase inhibitors. 2. Bi-and tricyclic derivatives result in superior antiviral and pharmacokinetic profiles[J]. J Med Chem, 2013, 56:1124-1135.
[35] Xue ZZ, Smith SJ, Métifiot M, et al. 4-Amino-1-hydroxy-2-oxo-1,8-naphthyridine-containing compounds having high potency against raltegravir-resistant integrase mutants of HIV-1[J]. J Med Chem, 2014, 57:5190-5202.
[36] Zhao XZ, Smith SJ, Métifiot M, et al. Bicyclic 1-hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamide-containing HIV-1 integrase inhibitors having high antiviral potency against cells harboring raltegravir-resistant integrase mutants[J]. J Med Chem, 2014, 57:1573-1582.
[37] Raheem IT, Walji AM, Klein D, et al. Discovery of 2-pyridinone aminals:aprodrug strategy to advance a second generation of HIV-1 integrase strand transfer inhibitors[J]. J Med Chem, 2015, 58:8154-8165.
[38] Chen WM, Liu XY. LEDGF/p75:a novel target for anti-HIV therapy and advances in the study of its related inhibitors[J]. Acta Pharm Sin (药学学报), 2009, 44:953-960.
[39] Christ F, Voet A, Marchand A, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication[J]. Nat Chem Biol. 2010, 6:442-448.
[40] Fenwick C, Amad M, Bailey MD, et al. Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor[J]. Antimicrob Agents Chemother, 2014, 58:3233-3244.
[41] Serrao E, Debnath B, Otake H, et al. Fragment-based discovery of 8-hydroxyquinoline inhibitors of the HIV-1 integrase-lens epithelium-derived growth factor/p75(IN-LEDGF/p75) inter­action[J]. J Med Chem, 2013, 56:2311-2322.
[42] Bai RJ, Liu XY. Transactivation of HIV-1 transcription and inhibitors[J]. Acta Pharm Sin (药学学报), 2006, 41:289-295.
[43] Wang J, Liu XY. Action of protein phosphatase-1 on Tat-dependent HIV-1transcription and its related inhibitors[J]. Acta Pharm Sin (药学学报), 2009, 44:1343-1347.
[44] Guendel I, Iordanskiy S, Van DR, et al. Novel neuroprotective GSK-3β inhibitor restricts Tat-mediated HIV-1 replication[J]. J Virol, 2014, 88:1189-1208.
[45] Hamasaki T, Okamoto M, Baba M. Identification of novel inhibitors of human immunodeficiency virus type 1 replication by in silico screening targeting cyclin T1/Tat interaction[J]. Antimicrob Agents Chemother, 2012, 57:1323-1331.
[46] Cao Y, Liu XY. HIV-1 Rev and related inhibitors[J]. Acta Pharm Sin (药学学报), 2007, 42:347-351.
[47] Campos N, Myburgh R, Garcel A, et al. Long lasting control of viral rebound with a new drug ABX464 targeting Rev-mediated viral RNA biogenesis[J]. Retrovirology, 2015, 12:1-15.
[48] Berkhout B, van der Velden YU. ABX464:a good drug candidate instead of a magic bullet[J]. Retrovirology, 2015, 12:1-3.
[49] Ammosova T, Platonov M, Ivanov A, et al. 1E7-03, a low MW compound targeting host protein phosphatase-1, inhibits HIV-1 transcription[J]. Br J Pharmacol, 2014, 171:5059-5075.
[50] Ammosova T, Platonov M, Yedavalli VRK, et al. Small molecules targeted to a non-catalytic "RVxF" binding site of protein phosphatase-1 inhibit HIV-1[J]. PLoS One, 2012, 7:e39481.
[51] Archin NM, Liberty AL, Kashuba AD, et al. Erratum:administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy[J]. Nature, 2012, 487:482-485.
[52] Tyagi M, Iordanskiy S, Ammosova T, et al. Reactivation of latent HIV-1 provirus via targeting protein phosphatase-1[J]. Retrovirology, 2015, 12:1-17.
[53] Liu JJ, Liu XY. Recent development of HIV protease inhibitor[J]. Chin J New Drug (中国新药杂志), 2006, 15:247-254.
[54] Ghosh AK, Martyr CD, Osswald HL, et al. Design of HIV-1 protease inhibitors with amino-bis-tetrahydrofuran derivatives as P2-Ligands to enhance backbone-binding interactions:synthesis, biological evaluation, and protein-ligand X-ray studies[J]. J Med Chem, 2015, 58:6994-7006.
[55] Ghosh AK, Chapsal BD, Melinda S, et al. Substituent effects on P2-cyclopentyltetrahydrofuranyl urethanes:design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors[J]. Bioorg Med Chem Lett, 2012, 22:2308-2311.
[56] Ghosh AK, Chapsal BD, Baldridge A, et al. Design and synthesis of potent HIV-1 protease inhibitors incorporating hexahydrofuropyranol-derived high affinity P(2) ligands:structure-activity studies and biological evaluation[J]. J Med Chem, 2011, 54:622-634.
[57] Ghosh AK, Parham GL, Martyr CD, et al. Highly potent HIV-1 protease inhibitors with novel tricyclic P2 ligands:design, synthesis, and protein-ligand X-ray studies[J]. J Med Chem, 2013, 56:6792-6802.
[58] Ghosh AK, Kulkarni S, Anderson DD, et al. Design, synthesis, protein-ligand X-ray structures and biological evaluation of a series of novel macrocyclic HIV-1 protease inhibitors to combat drug-resistance[J]. J Med Chem, 2011, 52:7689-7705.
[59] Tie Y, Boross PI, Wang YF, et al. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains[J]. J Mol Biol, 2004, 338:341-352.
[60] Bowman MJ, Chmielewski J. Crucial amides for dimerization inhibitors of HIV-1 protease[J]. Bioorg Med Chem Lett, 2004, 14:1395-1398.
[61] Dufau L, Ressurreição ASM, Fanelli R, et al. Carbonylhy­drazide-based molecular tongs inhibit wild-type and mutated HIV-1 protease dimerization[J]. J Med Chem, 2012, 55:6762-6775.
[62] Schimer J, Cígler P, Veselý J, et al. Structure-aided design of novel inhibitors of HIV protease based on a benzodiazepine scaffold[J]. J Med Chem, 2012, 55:10130-10135.
[63] Freed EO. HIV-1 assembly, release and maturation[J]. Nat Rev Microbiol, 2015, 13:484-496.
[64] Fontana J, Keller PW, Urano E, et al. Identification of an HIV-1 mutation in spacer peptide 1 that stabilizes the immature CA-SP1 lattice[J]. J Virol, 2016, 90:972-978.
[65] Li F, Zoumplis D, Matallana C, et al. Determinants of activity of the HIV-1 maturation inhibitor PA-457[J]. Virology, 2006, 356:217-224.
[66] Li Z, Xu JY, Xie WJ, et al. Advances in research on betulinic acid derivatives as anti-HIV agents[J]. Prog Pharm Sci (药学进展), 2013, 37:368-375.
[67] Swidorski JJ, Zheng L, Sit SY, et al. Inhibitors of HIV-1 maturation:development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids[J]. Bioorg Med Chem Lett, 2016, 26:1925-1930.
[68] Regueiroren A, Zheng L, Yan C, et al. Discovery of BMS-955176, a second generation HIV-1 maturation inhibitor with broad spectrum antiviral activity[J]. ACS Med Chem Lett, 2016, 7:568-572.
[69] Nowicka-Sans BPT, Lin Z, Li Z, et al. BMS-955176:identi­fication and characterization of a second-generation HIV-1 maturation inhibitor with improved potency, anti-viral spectrum and gag polymorphic coverage[J]. Antimicrob Agents Chemother, 2016, 60:3956-3969.
[70] Zhao Y, Gu Q, Morris-Natschke SL, et al. Incorporation of privileged structures into bevirimat can improve activity against wild-type and bevirimat-resistant HIV-1[J]. J Med Chem, 2016, 59:9262-9268.
[71] Blair WS, Cao J, Fok-Seang J, et al. New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation[J]. Antimicrob Agents Chemother, 2009, 53:5080-5087.
[72] Li DY, Zhan P, Liu XY. Recent progress in the development of HIV-1 capsid protein inhibitors[J]. Chin J Med Chem (中国药物化学杂志), 2011, 21:397-404.
[73] Li ZY, Zhan P, Liu XY. Progress in the study of HIV-1 Vif and related inhibitors[J]. Acta Pharm Sin (药学学报), 2010, 45:684-693.
[74] Mohammed I, Kummetha IR, Singh G, et al. 1,2,3-Triazoles as amide bioisosteres:discovery of a new class of potent HIV-1 vif antagonists[J]. J Med Chem, 2016, 59:7677-7682.
[75] Huang M, Maynard A, Turpin JA, et al. Anti-HIV agents that selectively target retroviral nucleocapsid protein zinc fingers without affecting cellular zinc finger proteins[J]. J Med Chem, 1998, 41:1371-1381.
[76] Jia YH, Yu Q, Liu XH, et al. Recent progress of inhibitors targeting HIV-1 NCp7[J]. Acta Pharm Sin (药学学报), 2017, 52:1652-1659.
[77] Garg D, Torbett BE. Advances in targeting nucleocapsid-nucleic acid interactions in HIV-1 therapy[J]. Virus Res, 2014, 193:135-1343.
[78] Hartman TL, Yang L, Helfrick AN, et al. Preclinical evaluation of a mercaptobenzamide and its prodrug for NCp7-targeted inhibition of human immunodeficiency virus[J]. Antiviral Res, 2016, 134:216-225.
[79] Sosic A, Frecentese F, Perissutti E, et al. Design, synthesis and biological evaluation of TAR and cTAR binders as HIV-1 nucleocapsid inhibitors[J]. Med Chem Comm, 2013, 4:1388-1393.
[80] Frecentese F, Sosic A, Saccone I, et al. Synthesis and in vitro screening of new series of 2,6-dipeptidyl-anthraquinones:influence of side chain length on HIV-1 nucleocapsid inhibitors[J]. J Med Chem, 2016, 59:1914-1924.
[81] Sancineto L, Mariotti A, Bagnoli L, et al. Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7(NCp7) inhibitors with anti-HIV activity[J]. J Med Chem, 2015, 58:9601-9614.
[82] Zhang J, Liu X, De Clercq E. Capsid (CA) protein as a novel drug target:recent progress in the research of HIV-1 CA inhibitors[J]. Mini Rev Med Chem, 2009, 9:510-518.
[83] Machara A, Lux V, Kozisek M, et al. Specific inhibitors of HIV capsid assembly binding to the C-terminal domain of the capsid protein:evaluation of 2-arylquinazolines as potential antiviral compounds[J]. J Med Chem, 2016, 59:545-558.
相关文献:
1.贾海永, 俞霁, 刘昕浩, 张健, 展鹏, 刘新泳.HIV-1核壳体蛋白NCp7抑制剂研究新进展[J]. 药学学报, 2017,52(11): 1652-1659
2.刘 鸿, 展 鹏, 刘新泳.HIV-1逆转录酶和整合酶双靶点抑制剂研究进展[J]. 药学学报, 2013,48(4): 466-476
3.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422
4.郑朴荣 薛海 肖志艳 刘刚.2005-2008年抗HIV-1化学治疗新药的重要研究进展[J]. 药学学报, 2010,45(2): 154-164
5.张 全 李晓宇 刘振龙 贾平平 魏晓露 赵立勋 蒋建东 岑山.HIV-1前体蛋白早成熟化激活剂筛选模型的建立及应用[J]. 药学学报, 2010,45(2): 247-252
6.刘振龙 李晓宇 张全 贾平平 杨亮 魏晓露 蒋建东 岑山.以病毒RNA核转运为靶点的抗HIV-1药物筛选模型的建立及应用[J]. 药学学报, 2010,45(2): 257-262
7.李泽琳 曾 越 苏立山 张小梅 邵一鸣 曾 欣 WOLF Hans 曾 毅.中药复方祛毒增宁胶囊抗艾滋病毒体外药效学的研究[J]. 药学学报, 2010,45(2): 253-256
8.惠斌;耿美玉;李静.硫酸多糖聚甘古酯抑制HIV-1反式转录调节蛋白诱导的THP-1细胞炎症细胞因子释放及机制探讨[J]. 药学学报, 2006,41(4): 338-341