药学学报, 2018, 53(4): 487-494
引用本文:
陈颖, 于浩滢, 孙岚, 杜冠华. 血管平滑肌细胞表型转化中microRNA调控信号传导通路的研究进展[J]. 药学学报, 2018, 53(4): 487-494.
CHEN Ying, YU Hao-ying, SUN Lan, DU Guan-hua. Research progress on regulation of signaling pathway by microRNA in phenotypic change of vascular smooth muscle cell[J]. Acta Pharmaceutica Sinica, 2018, 53(4): 487-494.

血管平滑肌细胞表型转化中microRNA调控信号传导通路的研究进展
陈颖, 于浩滢, 孙岚, 杜冠华
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京市药物靶标研究与药物筛选重点实验室, 北京 100050
摘要:
血管平滑肌细胞(vascular smooth muscle cell,VSMC)表型转化,即由收缩表型转化为合成表型,是血管重构关键环节,决定肺动脉高压、动脉粥样硬化等心脑血管疾病的发生、发展和疾病转归。研究表明,调控VSMC表型转化的关键信号传导分子,其表达水平受非编码RNA——microRNA的正向与负向调节。本文拟对VSMC表型转化相关的MAPK、TGFβ/Smad和PI3K/Akt等信号传导通路中关键分子的microRNA调控机制进行综述。
关键词:    平滑肌细胞      表型      microRNA      信号通路      血管重构     
Research progress on regulation of signaling pathway by microRNA in phenotypic change of vascular smooth muscle cell
CHEN Ying, YU Hao-ying, SUN Lan, DU Guan-hua
Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
A change in vascular smooth muscle cell (VSMC) phenotype, known as converting from a contractile state into a synthetic phenotype, is a crucial event in vascular remodeling, which determines the occurrence, development and prognosis of cardiovascular diseases such as pulmonary hypertension and atherosclerosis. Research shows that the expression level of key signaling molecules, which controls the phenotype change of VSMC, is regulated by microRNA (miRNA), a type of non-encoding RNA. In this article, we provide a review of miRNA in the regulation of VSMC phenotype changes with a focus on the key molecules in MAPK, TGFβ/Smad and PI3K/Akt signaling pathways.
Key words:    smooth muscle cell    phenotype    microRNA    signal pathway    vascular remodeling   
收稿日期: 2017-08-17
DOI: 10.16438/j.0513-4870.2017-0991
基金项目: 国家自然科学基金资助项目(81102445,81670456);北京市自然科学基金资助项目(7162132);中国医学科学院青年基金和中央高校基本科研经费(33320140069);中国医学科学院医学与健康科技创新工程项目资助(2017-I2M-1-011).
通讯作者: 孙岚,Tel:86-10-83157220,E-mail:sunhanxing2005@imm.ac.cn;杜冠华,Tel:86-10-63165184,E-mail:dugh@imm.ac.cn
Email: sunhanxing2005@imm.ac.cn;dugh@imm.ac.cn
相关功能
PDF(366KB) Free
打印本文
0
作者相关文章
陈颖  在本刊中的所有文章
于浩滢  在本刊中的所有文章
孙岚  在本刊中的所有文章
杜冠华  在本刊中的所有文章

参考文献:
[1] Coll-Bonfill N, Cruz-Thea BDL, Pisano MV, et al. Noncoding RNAs in smooth muscle cell homeostasis:implications in phenotypic switch and vascular disorders[J]. Pflug Arch Eur J Phy, 2016, 468:1071-1087.
[2] Long X, Cowan SL, Miano JM. Mitogen-activated protein kinase 14 is a novel negative regulatory switch for the vascular smooth muscle cell contractile gene program[J]. Arterioscl Throm Vas, 2013, 33:378-386.
[3] Luo T, Cui S, Bian C, et al. Crosstalk between TGF-β/Smad3 and BMP/BMPR2 signaling pathways via miR-17-92 cluster in carotid artery restenosis[J]. Mol Cell Biochem, 2014, 389:169-176.
[4] Fan Z, Li C, Qin C, et al. Role of the PI3K/AKT pathway in modulating cytoskeleton rearrangements and phenotype switching in rat pulmonary arterial vascular smooth muscle cells[J]. DNA Cell Biol, 2014, 33:12-19.
[5] Joshi SR, Comer BS, Mclendon JM, et al. microRNA regulation of smooth muscle phenotype[J]. Mol Cell Pharmacol, 2012, 4:1-16.
[6] Yang Z, Zheng B, Zhang Y, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2(MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells[J]. Biochim Biophys Acta, 2015, 1852:1477-1489.
[7] Yang LX, Liu G, Zhu GF, et al. microRNA-155 inhibits angiotensin Ⅱ-induced vascular smooth muscle cell proliferation[J]. J Renin Angiotensin Aldosterone Syst, 2014, 15:109-116.
[8] Li TJ, Chen YL, Gua CJ, et al. microRNA 181b promotes vascular smooth muscle cells proliferation through activation of PI3K and MAPK pathways[J]. Int J Clin Exp Pathol, 2015, 8:10375-10384.
[9] Liu X, Cheng Y, Chen X, et al. microRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2[J]. J Biol Chem, 2011, 286:42371-42380.
[10] Choe N, Kwon JS, Kim JR, et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia[J]. Atherosclerosis, 2013, 229:348-355.
[11] Sun L, Bai Y, Zhao R, et al. Oncological miR-182-3p, a novel smooth muscle cell phenotype modulator, evidences from model rats and patients[J]. Arterioscl Throm Vas, 2016, 36:1386-1397.
[12] Torella D, Iaconetti C, Catalucci D, et al. microRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo[J]. Circ Res, 2011, 109:880-893.
[13] Hu W, Wang M, Yin H, et al. microRNA-1298 is regulated by DNA methylation and affects vascular smooth muscle cell function by targeting connexin 43[J]. Cardiovasc Res, 2015, 107:534-545.
[14] Wang S, Tang L, Zhou Q, et al. miR-185/P2Y6 axis inhibits angiotensin Ⅱ-induced human aortic vascular smooth muscle cell proliferation[J]. DNA Cell Biol, 2017, 36:377-385.
[15] Brock M, Samillan VJ, Trenkmann M, et al. AntagomiR directed against miR-20a restores functional BMPR2 signal-ling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension[J]. Eur Heart J, 2014, 35:3203-3211.
[16] Zhao N, Koenig SN, Trask AJ, et al. miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells[J]. Circ Res, 2015, 116:23-24.
[17] Wu C. Molecular basis for antagonism between PDGF and the TGFβ family of signaling pathways by control of miR-24 expression[J]. EMBO J, 2010, 29:559-573.
[18] Cheng G, Wang X, Li Y, et al. let-7a-Transfected mesen-chymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling[J]. Stem Cell Res, 2017, 8:34.
[19] Huang K, Bao H, Yan ZQ, et al. microRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein[J]. Cardiovasc Res, 2017, 113:cvw257.
[20] Xie B, Zhang C, Kang K, et al. miR-599 inhibits vascular smooth muscle cells proliferation and migration by targeting TGFB2[J]. PLoS One, 2015, 10:e0141512.
[21] Li S, Ran Y, Zhang D, et al. microRNA-138 plays a role in hypoxic pulmonary vascular remodelling by targeting Mst1[J]. Biochem J, 2013, 452:281-291.
[22] Choe N, Kwon JS, Yong SK, et al. The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor[J]. Cell Signal, 2015, 27:1056-1065.
[23] Cho JR, Lee CY, Lee J, et al. microRNA-761 inhibits angiotensin Ⅱ-induced vascular smooth muscle cell proliferation and migration by targeting mammalian target of rapamycin[J]. Clin Hemorheol Micro, 2015, 63:45-56.
[24] Hu R, Pan W, Fedulov AV, et al. microRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway[J]. FASEB J, 2014, 28:2347-2357.
[25] Dileepan M, Jude JA, Rao SP, et al. microRNA-708 regu-lates CD38 expression through signaling pathways JNK MAP kinase and PTEN/AKT in human airway smooth muscle cells[J]. Resp Res, 2014, 15:1-12.
[26] Liang KW, Yin SC, Ting CT, et al. Berberine inhibits plate-let-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells[J]. Eur J Pharmacol, 2008, 590:343-354.
[27] Turczynska KM, Bhattachariya A, Sall J, et al. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling[J]. PLoS One, 2013, 8:e65135.
[28] Wang YS, Wang HY, Liao YC, et al. microRNA-195 regu-lates vascular smooth muscle cell phenotype and prevents neointimal formation[J]. Cardiovasc Res, 2012, 95:517-526.
[29] Chen H, Untiveros GM, Mckee LA, et al. micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25[J]. PLoS One, 2012, 7:e41574.
[30] Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine[J]. Gene Dev, 2008, 22:1276-1312.
[31] Davis BN, Hilyard AC, Nguyen PH, et al. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype[J]. J Biol Chem, 2009, 284:3728-3738.
[32] Kim S, Kang H. miR-15b induced by platelet-derived growth factor signaling is required for vascular smooth muscle cell proliferation[J]. BMB Rep, 2013, 46:550-554.
[33] Talasila A, Yu H, Ackers-Johnson M, et al. Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-beta[J]. Arterioscl Throm Vas, 2013, 33:2355-2365.
[34] Qian Z, Zhang L, Chen J, et al. miR-328 targeting PIM-1 inhibits proliferation and migration of pulmonary arterial smooth muscle cells in PDGFBB signaling pathway[J]. Oncotarget, 2016, 7:54998-55011.
[35] Bandara V, Michael MZ, Gleadle JM. microRNA biogenesis in hypoxia[J]. MicroRNA, 2017, 6:80-96.
[36] Shan F, Li J, Huang QY. HIF-1 alpha-induced up-regulation of miR-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia[J]. J Cell Physiol, 2014, 229:1511-1520.
[37] Chen L, Li YS, Cui J, et al. miR-206 controls the phenotypic modulation of pulmonary arterial smooth muscle cells induced by serum from rats with hepatopulmonary syndrome by regulating the target gene, annexin A2[J]. Cell Physiol Biochem, 2014, 34:1768-1779.
[38] Deng B, Du J, Hu R, et al. microRNA-103/107 is involved in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by targeting HIF-1β[J]. Life Sci, 2016, 147:117-124.
[39] Li H, Zhao X, Shan H, et al. microRNAs in idiopathic pulmonary fibrosis:involvement in pathogenesis and potential use in diagnosis and therapeutics[J]. Acta Pharma Sin B, 2016, 6:531-539.
[40] An X, Sarmiento C, Tan T, et al. Regulation of multidrug resistance by microRNAs in anti-cancer therapy[J]. Acta Pharm Sin B, 2017, 7:38-51.
[41] Bai RN, Yang QN, Ruixi Xi, et al. miR-941 as a promising biomarker for acute coronary syndrome[J]. BMC Car-diovasc Disor, 2017, 17:227.
[42] Chen W, Li S. Circulating microRNA as a novel biomarker for pulmonary arterial hypertension due to congenital heart disease[J]. Pediatr Cardiol, 2017, 38:86-94.
[43] Kukreja RC, Yin C, Salloum FN. microRNAs:new players in cardiac injury and protection[J]. Mol Pharmacol, 2011, 80:558-564.
[44] Rupaimoole R, Slack FJ. microRNA therapeutics:towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16:203-222.