药学学报, 2018, 53(4): 529-537
引用本文:
岳鹏飞, 刘阳, 谢锦, 陈颖翀, 杨明. 药物纳米晶体制备技术30年发展回顾与展望[J]. 药学学报, 2018, 53(4): 529-537.
YUE Peng-fei, LIU Yang, XIE Jin, CHEN Ying-chong, YANG Ming. Review and prospect on preparation technology of drug nanocrystals in the past thirty years[J]. Acta Pharmaceutica Sinica, 2018, 53(4): 529-537.

药物纳米晶体制备技术30年发展回顾与展望
岳鹏飞, 刘阳, 谢锦, 陈颖翀, 杨明
江西中医药大学, 现代中药制剂教育部重点实验室, 创新药物与高效节能降耗制药设备国家重点实验室, 江西 南昌 330004
摘要:
纳米晶体是难溶性药物给药系统研究的热点。纳米晶体不同于载体纳米粒,其药物并非包载于高分子材料中,同时纳米晶体也不同于固体分散体,其内部有药物晶体存在。纳米晶体制备工艺简单,为改善难溶性药物的溶解度与生物利用度提供了一种有效的技术方法,极具产业化应用与发展潜力。本文将对纳米晶体技术的发展历程进行回顾,以纳米晶体制备技术方法的发展为主线进行综述,并对其存在的问题进行分析与展望,期望为药物纳米晶体制剂的研发提供借鉴。
关键词:    纳米晶体      制备技术      bottom-up技术      top-down技术      组合技术     
Review and prospect on preparation technology of drug nanocrystals in the past thirty years
YUE Peng-fei, LIU Yang, XIE Jin, CHEN Ying-chong, YANG Ming
Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Laboratory of Innovative Drug and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
Abstract:
Nanocrystals is a hot topic of poorly soluble drug delivery system under development. Nanocrystals is different from the nanoparticles for drug unloading in polymer materials, and nanocrystals is different from solid dispersion system, in which the drug maintains crystals state. Nanocrystals has a simple preparation process, represents an effective technology in the improvement of solubility and bioavailability of poorly soluble drugs, and has a very promising industrialization application and development potential. In this paper, we retrospect the development history of drug nanocrystals technology, review development of the preparation methods of nanocrystals, and analyze the existing problems to provide a reference to the development of drug nanocrystals preparation.
Key words:    nanocrystal    preparation technology    bottom-up    top-down    combinative technology   
收稿日期: 2017-09-15
DOI: 10.16438/j.0513-4870.2017-0920
基金项目: 国家自然科学基金资助项目(81560656,81760715);江西省杰出青年人才资助计划(20162BCB23033);江西省自然科学基金资助项目(20161BAB205221).
通讯作者: 岳鹏飞,Tel/Fax:86-791-87118658,E-mail:ypfpharm@126.com;杨明,E-mail:yangming16@126.com
Email: ypfpharm@126.com;yangming16@126.com
相关功能
PDF(379KB) Free
打印本文
0
作者相关文章
岳鹏飞  在本刊中的所有文章
刘阳  在本刊中的所有文章
谢锦  在本刊中的所有文章
陈颖翀  在本刊中的所有文章
杨明  在本刊中的所有文章

参考文献:
[1] Krishnaiah YSR. Pharmaceutical technologies for en-hancing oral bioavailability of poorly soluble drugs[J]. J Bioequival Bioavailabil, 2010, 2:28-36.
[2] Zheng A, Shi J. Research progress in nanocrystal drugs[J]. J Int Pharm Res (国际药学研究杂志), 2012, 39:177-183.
[3] Gao L, Liu G, Ma J, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs[J]. Pharm Res, 2013, 30:307-324.
[4] Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery[J]. Acta Pharm Sin B, 2016, 6:106-113.
[5] Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals:formulations and factors affecting particle size[J]. Int J Pharm, 2013, 453:126-141.
[6] Liu T, Müller RH, Möschwitzer JP. Effect of drug phys-ico-chemical properties on the efficiency of top-down process and characterization of nanosuspensions[J]. Expert Opin Drug Del, 2015, 12:1741-1754.
[7] Müller RH, Gohla S, Keck CM. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery[J]. Eur J Pharm Biopharm, 2011, 78:1-9.
[8] List M, Sucker H. Pharmaceutical colloidal hydrosols for injection:GB, 2200048[P]. 1988-07-27.
[9] Auweter H, Bohn H, Heger R, et al. Precipitated water insoluble colorants in colloid disperse form:US, 6494924[P]. 2002-12-17.
[10] Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization[J]. Eur J Pharm Biopharm, 2006, 62:3-16.
[11] Majuru S, Oyewumi MO. Nanotechnology in Drug, Devel-opment and Life Cycle Management[M]//De Villiers MM, Aramwit P, Kwon GS. Nanotechnology in Drug Delivery. New York:Springer, 2009:597-619.
[12] Muller RH, Becker R, Kruss B, et al. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution:US, 5858410 A[P]. 1999-01-12.
[13] Helmut MR, Karsten K, Karsten M. Verfahren zur schonenden Herstellung von hochfeinen mikropartikeln und nanopartikeln:Germany, DE19932157A[P]. 2001-01-18.
[14] Kipp JE, Wong JCT, Doty MJ, et al. Microprecipitation method for preparing submicron suspensions:US, 6607784[P]. 2003-08-19.
[15] Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery:hope or hype[J]. Drug Deliv Transl Res, 2016, 6:399-413.
[16] Möschwitzer J, Lemke A. Method for carefully producing ultrafine particle suspensions and ultrafine particles and use:EP, 2006/003377[P]. 2006-10-19.
[17] Petersen R. Nanocrystals for use in topical cosmetic formulations and method of production thereof:US, 9114077[P]. 2015-08-25.
[18] Scholz P, Arntjen A, Müller RH, et al. ARTcrystal® process for industrial nanocrystals production optimization of the ART MICCRA pre-milling step[J]. Int J Pharm, 2014, 465:388-395.
[19] Du J, Li X, Zhao H, et al. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies[J]. Int J Pharm, 2015, 495:738-749.
[20] Yue P, Wang Y, Wan J, et al. The research progress of preparation methods of solid nanocrystal delivery system[J]. Acta Pharm Sin (药学学报), 2012, 47:1120-1127.
[21] Gassmann P, Sucker H. Improvements in pharmaceutical compositions:European, 0580690[P]. 1992.
[22] Auweter H, André V, Horn D, et al. The function of gelatin in controlled precipitation processes of nanosize particles[J]. J Dispers Sci Technol, 1998, 19:163-184.
[23] Kleimann J, Gehin-Delval C, Auweter H, et al. Super-stoichiometric charge neutralization in particle-polyelectrolyte systems[J]. Langmuir, 2005, 21:3688-3698.
[24] Zhang J, Huang Y, Liu D, et al. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement[J]. Eur J Pharm Sci, 2013, 48:740-747.
[25] Han X, Wang M, Ma Z, et al. A new approach to produce drug nanosuspensions CO2-assisted effervescence to produce drug nanosuspensions[J]. Colloids Surf B Biointerfaces, 2016, 143:107-110.
[26] Wang Y, Han X, Wang J, et al. Preparation, characterization and in vivo evaluation of amorphous tacrolimus nanosuspensions produced using CO2-assisted in situ nanoamorphization method[J]. Int J Pharm, 2016, 505:35-41.
[27] Lu Y, Chen Y, Gemeinhart RA, et al. Developing nanocrystals for cancer treatment[J]. Nanomedicine (Lond), 2015, 10:2537-2552.
[28] Meriskoliversidge EM, Liversidge GG. Drug nanoparticles:formulating poorly water-soluble compounds[J]. Toxicol Pathol, 2008, 36:43-48.
[29] Zeng LB, Lian YF, Zhang JD, et al. Progress in the industrializetion of nanocrystal technology[J]. J Chin Pharm Univ (中国药科大学学报), 2013, 44:504-510.
[30] Bitterlich A, Laabs C, Krautstrunk I, et al. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling[J]. Eur J Pharm Biopharm, 2015, 92:171-179.
[31] Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process[J]. Int J Pharm, 2013, 453:142-156.
[32] Raghava Srivalli KM, Mishra B. Drug nanocrystals:a way toward scale-up[J]. Saudi Pharm J, 2016, 24:386-404.
[33] Leone F, Cavalli R. Drug nanosuspensions:a ZIP tool between traditional and innovative pharmaceutical formula-tions[J]. Expert Opin Drug Del, 2015, 12:1607-1625.
[34] Kipp JE, Doty MJ, Rebbeck CL, et al. Compositions of and method for preparing stable particles in a frozen aqueous matrix:US, 20030077329A1[P]. 2003-04-24.
[35] Wang WP, Hu J, Sui H, et al. Glabridin nanosuspension for enhanced skin penetration:formulation optimization, in vitro and in vivo evaluation[J]. Pharmazie, 2016, 71:252-257.
[36] Shen G, Cheng L, Wang LQ, et al. Formulation of dried lignans nanosuspension with high redispersibility to enhance stability, dissolution, and oral bioavailability[J]. Chin J Nat Med, 2016, 14:757-768.
[37] Yang L, Jiang J, Hong J, et al. High drug payload 10-hydroxycamptothecin nanosuspensions stabilized by cholesterol-PEG:in vitro and in vivo investigation[J]. J Biomed Nanotechnol, 2015, 11:711-721.
[38] Möschwitzer J, Muller RH. Method and device for producing very fine particles and coating such particles:Canada, CA20062628562[P]. 2006-10-13.
[39] Li Y, Wang Y, Yue PF, et al. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production-a case study with ursodeoxycholic acid[J]. Pharm Dev Technol, 2014, 19:662-670.
[40] Kalvakuntla S, Deshpande M, Attari Z, et al. Preparation and characterization of nanosuspension of aprepitant by H96 process[J]. Adv Pharm Bull, 2016, 6:83-90.
[41] Möschwitzer J, Müller RH. New method for the effective production of ultrafine drug nanocrystals[J]. J Nanosci Nanotechnol, 2006, 6:3145-3153.
[42] Salazar J, Ghanem A, Müller RH, et al. Nanocrystals:comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches[J]. Eur J Pharm Biopharm, 2012, 81:82-90.
[43] Morakul B, Suksiriworapong J, Chomnawang MT, et al. Dissolution enhancement and in vitro performance of clari-thromycin nanocrystals produced by precipita-tion-lyophilization-homogenization method[J]. Eur J Pharm Biopharm, 2014, 88:886-896.
[44] Salazar J, Müller RH, Möschwitzer JP. Performance comparison of two novel combinative particle-size-reduction technologies[J]. J Pharm Sci, 2013, 102:1636-1649.
[45] Martena V, Shegokar R, Di Martino P, et al. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals[J]. Drug Dev Ind Pharm, 2014, 40:1199-1205.
[46] Panagiotou T, Mesite SV, Fisher RJ. Production of norfloxacin nanosuspensions using microfluidics reaction technology through solvent/antisolvent crystallization[J]. Ind Eng Chem Res, 2009, 48:1761-1771.
[47] Keck CM. Nanocrystals and amorphous nanoparticles and method for production of the same by a low energy process:US, 11185527[P]. 2011-10-17.
[48] Yue PF, Li Y, Wan J, et al. Study on formability of solid nanosuspensions during nanodispersion and solidification:I. novel role of stabilizer/drug property[J]. Int J Pharm, 2013, 454:269-277.
[49] Rachmawati H, Shaal LA, Müller RH, et al. Development of curcumin nanocrystal:physical aspects[J]. J Pharm Sci, 2013, 102:204-214.
[50] George M, Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology[J]. Eur J Pharm Sci, 2013, 48:142-152.
[51] Fan F, Tang X, Li X, et al. Preparation and evaluation of pharmacodynamic of the pectin-doxorubicin conjugate nanosuspensions[J]. Acta Pharm Sin (药学学报), 2016, 51:1476-1482.
[52] Yazdi AK, Smyth HD. Carrier-free high-dose dry powder inhaler formulation of ibuprofen:physicochemical characterization and in vitro aerodynamic performance[J]. Int J Pharm, 2016, 511:403-414.
[53] Hao J, Zhao J, Zhang S, et al. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery[J]. Colloids Surf B Biointerfaces, 2016, 147:376-386.
[54] Ali HSM, Hanafy AF. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery:engineering, formulation, and evaluation[J]. J Pharm Sci, 2017, 106:402-410.
[55] Talekar M, Ganta S, Amiji M, et al. Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy[J]. Int J Pharm, 2013, 450:278-289.