药学学报, 2018, 53(4): 553-560
引用本文:
刘文虎, 汪宜, 李生茂, 张建武, 常晋霞. 赫赛汀获得性耐药胃癌细胞非标定量蛋白质组学研究[J]. 药学学报, 2018, 53(4): 553-560.
LIU Wen-hu, WANG Yi, LI Sheng-mao, ZHANG Jian-wu, CHANG Jin-xia. Label-free quantitative proteomic analysis of acquired herceptin resistance in gastric cancer cells[J]. Acta Pharmaceutica Sinica, 2018, 53(4): 553-560.

赫赛汀获得性耐药胃癌细胞非标定量蛋白质组学研究
刘文虎1,3, 汪宜3, 李生茂1, 张建武1, 常晋霞2
1. 川北医学院药学院, 四川 南充 637007;
2. 川北医学院基础医学院, 四川 南充 637007;
3. 国家蛋白质科学中心, 蛋白质组学国家重点实验室, 北京 102206
摘要:
基于非标定量(label-free quantitative)蛋白质组学对HER2表达阳性胃癌细胞(N87)和赫赛汀获得性耐药细胞(N87/R)进行蛋白质组学研究,发现耐药细胞蛋白质组的变化。提取的蛋白质样品经还原烷基化、FASP酶解;肽段经自制反相柱(small manual reversed phase,sRP)分离、LC-MS/MS分析;获取的数据通过Protein Database 2.1软件搜库鉴定。采用基于强度定量法(intensity based quantification,IBQ)进行蛋白质定量,寻找差异表达蛋白质。基于Web Gestalt数据库对差异蛋白质进行基因本体分析(gene ontology,GO)、基因-疾病网络构建及通路富集分析。共鉴定蛋白质8 509个,对其中7 163个蛋白质进行生物信息学分析,与母本组相比,耐药组中110个蛋白质显著上调,70个下调。GO富集显示,差异蛋白质在细胞成分、生物过程、分子功能方面明显不同;基因-疾病网络分析表明,差异蛋白质与肿瘤转移、肿瘤侵袭及炎症等相关;Wikipathway富集表明,IL-2、MAPK/ERK、mTOR、aurora A、Ret激酶、NF-κB、免疫调控及代谢通路在耐药细胞中有显著变化;Western blot证实,ERK1/2在耐药组中表达显著增加;MAPK/ERK通路抑制剂SCH772984能够选择性降低耐药细胞活力。结果表明,MAPK/ERK通路激活是赫赛汀获得性耐药的重要机制。本研究为胃癌赫赛汀耐药机制研究提供了理论基础。
关键词:    赫赛汀      获得性耐药      蛋白质组学      MAPK/ERK信号通路     
Label-free quantitative proteomic analysis of acquired herceptin resistance in gastric cancer cells
LIU Wen-hu1,3, WANG Yi3, LI Sheng-mao1, ZHANG Jian-wu1, CHANG Jin-xia2
1. Department of Pharmacology, North Sichuan Medical College, Nanchong 637007, China;
2. School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637007, China;
3. State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing 102206, China
Abstract:
This study was designed to explore proteins differentially expressed in HER2 positive gastric cancer N87 cells and N87/R cells with an acquired resistance to herceptin based on label-free quantitative proteomics. The extracted proteins were reduced and alkylated, then digested using filter aided sample preparation (FASP); peptides were separated via small manual reversed phase column, analyzed by LC-MS/MS, and identified with protein database 2.1 search engine. Proteins were quantified by intensity based quantification (IBQ) to search for differential proteins by comparison with relatively quantified proteins. The enrichment and network construction in gene ontology (GO) terms, genes-disease and Wikipathway of differential proteins were established through Web Gestalt. A total of 8 509 proteins were detected, among them, 7 163 proteins were further analyzed by bioinformatics, of which 110 proteins were up-regulated and 70 were down-regulated in N87/R cells. The differential proteins showed a significant difference in cellular component, biological process and molecular function in GO terms, respectively. Genes-disease network analysis indicated the association of these differential proteins with neoplasm metastasis, neoplasm invasiveness and inflammation, etc. Wikipathway enrichment analysis revealed the relevance of several signaling pathways to herceptin resistance, which included IL-2, MAPK/ERK, mTOR, aurora A, Ret, NF-κB, immune-regulatory and metabolic pathway. Western blot showed a significant increase of ERK1/2 activities in N87/R cells compared with N87 cells. Correspondingly, SCH772984, a MAPK/ERK inhibitor, preferentially reduced the viability of N87/R cells. Taken together, our data suggested that the MAPK/ERK signaling pathway is one of the key pathways that mediate herceptin resistance. This study provides the basic information for exploring the mechanisms of acquired resistance to herceptin in gastric cancer cells.
Key words:    herceptin    acquired resistance    proteomics    MAPK/ERK signaling pathway   
收稿日期: 2017-12-21
DOI: 10.16438/j.0513-4870.2017-1277
基金项目: 国家自然科学基金资助项目(31270822);四川省教育厅基金项目(17ZB0170).
通讯作者: 常晋霞,Tel:86-817-3352013,E-mail:jinxiachang@163.com
Email: jinxiachang@163.com
相关功能
PDF(546KB) Free
打印本文
0
作者相关文章
刘文虎  在本刊中的所有文章
汪宜  在本刊中的所有文章
李生茂  在本刊中的所有文章
张建武  在本刊中的所有文章
常晋霞  在本刊中的所有文章

参考文献:
[1] Roukos DH. Targeting gastric cancer with trastuzumab:new clinical practice and innovative developments to overcome resistance[J]. Ann Surg Oncol, 2010, 17:14-17.
[2] Gomez-Martín C, Lopez-Rios F, Aparicio J, et al. A critical review of HER2-positive gastric cancer evaluation and treatment:from trastuzumab, and beyond[J]. Cancer Lett, 2014, 351:30-40.
[3] Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2 positive breast cancer[J]. J Clin Oncol, 2009, 27:5838-5847.
[4] Tang X, Ding Q, Lin L, et al. Development of antibody drugs targeting against HER2 for cancer therapy[J]. Acta Pharm Sin (药学学报), 2012, 47:1297-1305.
[5] Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastu-zumab in breast cancer[J]. Clin Cancer Res, 2009, 15:7479-7491.
[6] Gajria D, Chandarlapaty S. HER2-amplified breast cancer:mechanisms of trastuzumab resistance and novel targeted therapies[J]. Expert Rev Anticancer Ther, 2011, 11:263-275.
[7] Hudis CA. Trastuzumab-mechanism of action and use in clinical practice[J]. New Engl J Med, 2007, 357:39-51.
[8] Li X, Wang W, Chen J. Recent progress in mass spectrometry proteomics for biomedical research[J]. Sci China Life Sci, 2017, 60:1093-1113.
[9] Abazova N, Krijgsveld J. Advances in stem cell proteomics[J]. Curr Opin Genet Dev, 2017, 46:149-155.
[10] Ding C, Jiang J, Wei J, et al. A fast workflow for identification and quantification of proteomes[J]. Mol Cell Proteomics, 2013, 12:2370-2380.
[11] Wisniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis[J]. Nat Methods, 2009, 6:359-362.
[12] Liu F, Korc M. CDK4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells[J]. Mol Cancer Ther, 2012, 11:2138-2148.
[13] Baker SJ, Reddy EP. CDK4 a key player in the cell cycle, development, and cancer[J]. Genes Cancer, 2012, 3:658-669.
[14] Houten SM, Denis S, Argmann CA, et al. Peroxisomal L-bifunctional enzyme (EHHADH) is essential for the production of medium-chain dicarboxylic acids[J]. J Lipid Res, 2012, 53:1296-1303.
[15] Huang H, Svoboda RA, Lazenby AJ, et al. Up-regulation of N-cadherin by collagen I activated discoidin domain receptor 1 in pancreatic cancer requires the adaptor molecule SHC1[J]. J Biol Chem, 2016, 291:23208-23223.
[16] Fulda S. Caspase 8 in cancer biology and therapy[J]. Cancer Lett, 2009, 281:128-133.
[17] Tummers B, Green DR. Caspase-8:regulating life and death[J]. Immunol Rev, 2017, 277:76-89.
[18] Dent S, Oyan B, Honig A, et al. HER2-targeted therapy in breast cancer:a systematic review of neoadjuvant trials[J]. Cancer Treat Rev, 2013, 39:622-631.
[19] Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer[J]. Pharmacol Res, 2014, 79:34-74.
[20] Arteaga CL, Engelman JA. ERBB receptors:from oncogene discovery to basic science to mechanism-based cancer thera-peutics[J]. Cancer Cell, 2014, 25:282-303.
[21] Chang L, Li CH, Gao J. Progress in the study of HER2-targeted cancer therapeutic antibodies[J]. Acta Pharm Sin (药学学报), 2015, 50:516-520.
[22] Yang ZY, Guo L, Liu D, et al. Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop[J]. Oncotarget, 2015, 6:5072-5087.
[23] Piro G, Carbone C, Cataldo I, et al. An FGFR3 autocrine loop sustains acquired resistance to trastuzumab in gastric cancer patients[J]. Clin Cancer Res, 2016, 22:6164-6175.
[24] Liu J, Pan C, Guo L, et al. A new mechanism of trastuzumab resistance in gastric cancer:MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway[J]. J Hematol Oncol, 2016, 9:76.
[25] Zhao C, Li H, Lin HJ, et al. Feedback activation of STAT3 as a cancer drug-resistance mechanism[J]. Trends Pharmacol Sci, 2016, 37:47-61.
[26] Shi M, Yang ZY, Hu M, et al. Catecholamine-induced β2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression[J]. J Immunol, 2013, 190:5600-5608.
[27] Liu WH, Chang JX, Liu MW, et al. Quantitative proteomics profiling reveals activation of mTOR pathway in trastuzumab resistance[J]. Oncotarget, 2017, 8:45793-45806.
[28] Zuo Q, Liu J, Zhang J, et al. Development of trastuzumab-resistant human gastric carcinoma cell lines and mechanisms of drug resistance[J]. Sci Rep, 2015, 5:11634.
[29] Zhao YP, Shen SJ, Guo JC, et al. Mitogen-activated protein kinases and chemoresistance in pancreatic cancer cells[J]. J Surg Res, 2006, 136:325-335.
[30] Haagenson KK, Wu GS. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment[J]. Cancer Metast Rev, 2010, 29:143-149.
[31] Mccubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant trans-formation and drug resistance[J]. Biochim Biophys Acta, 2007, 1773:1263-1284.
[32] Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer:an overview[J]. Cancers, 2014, 6:1769-1792.
[33] Ochi N, Takigawa N, Harada D, et al. Src mediates ERK reactivation in gefitinib resistance in non-small cell lung cancer[J]. Exp Cell Res, 2014, 322:168-177.
[34] Yang XL, Lin FJ, Guo YJ, et al. Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT mediated cellular proliferation exerts negative feedback via the MER/MAPK and mTOR pathways[J]. Onco Targets Ther, 2014, 7:1033-1042.