药学学报, 2018, 53(4): 636-645
引用本文:
何贝轩, 薛英茹, 涂燕华, 高越, 郭美丽. CtCHS4响应茉莉酸甲酯诱导促进了红花醌式查尔酮类化合物的积累[J]. 药学学报, 2018, 53(4): 636-645.
HE Bei-xuan, XUE Ying-ru, TU Yan-hua, GAO Yue, GUO Mei-li. CtCHS4 induces the accumulation of safflower quinone chalcones in response to methyl jasmonate induction[J]. Acta Pharmaceutica Sinica, 2018, 53(4): 636-645.

CtCHS4响应茉莉酸甲酯诱导促进了红花醌式查尔酮类化合物的积累
何贝轩, 薛英茹, 涂燕华, 高越, 郭美丽
第二军医大学药学院, 上海 200433
摘要:
黄酮类化合物特别是查尔酮类如羟基红花黄色素A、红花红色素等是红花的主要药效成分,研究红花黄酮类的生物合成途径,对于定向调控红花的品质具有重要意义。作为调控黄酮类成分合成的入口酶,查尔酮合酶(CHS)在黄酮类化合物的合成过程中起着重要作用。但到目前为止,CHS在红花黄酮类化合物生物合成过程中的作用尚不十分清楚。茉莉酸甲酯JA/MeJA作为植物信号调节物质可以激活植物体内CHS基因表达。本研究在前期阐明红花的1个CHS基因CtCHS1功能的基础上,作为延续性工作,继续对红花中的其他CHS基因CtCHS2CtCHS4进行研究。应用MeJA刺激花冠,分别于刺激后0、3、6、12 h不同时间点采用qRT-PCR法分析CtCHS2CtCHS4的相对表达量,采用UHPLC/Q-TOF-MS技术分析红花中次生代谢产物的变化。结果表明,CtCHS4的表达量响应MeJA的诱导在3、6 h均明显升高,而CtCHS2的表达量则在诱导后表现出降低的趋势;同时,MeJA诱导后,芦丁、羟基红花黄色素A、D-苯丙氨酸、山柰酚-3-O-β-芸香糖苷、红花红色素的积累量明显提高,特别是羟基红花黄色素A的积累量在诱导后3、6、12 h均显著性的提高(P ≤ 0.05或0.01),而对山柰酚、山柰酚-3-O-β-D-葡萄糖苷、木犀草素、槲皮素-3-β-D-葡糖苷的积累量的影响则不明显。Pearson相关分析结果表明,羟基红花黄色素A、红花红色素的积累量与CtCHS4的表达量均呈显著性正相关(r ≥ 0.8)。提示CtCHS4可能是形成羟基红花黄色素A和红花红色素的关键基因,在红花查尔酮类成分的积累中起着重要作用。CtCHS4-pMAL-C5X重组质粒在BL21(DE3)PlyS原核表达宿主菌中成功表达出CtCHS4活性蛋白,在体外催化底物香豆酰辅酶A和丙二酰辅酶A生成了产物柚皮素。本研究结果进一步完善了红花中CHS基因的功能,为最终阐明红花查尔酮类化合物生物合成途径的关键基因积累了资料。
关键词:    CtCHS4      茉莉酸甲酯      醌式查尔酮      羟基红花黄色素A     
CtCHS4 induces the accumulation of safflower quinone chalcones in response to methyl jasmonate induction
HE Bei-xuan, XUE Ying-ru, TU Yan-hua, GAO Yue, GUO Mei-li
School of Pharmacy, Second Military Medical University, Shanghai 200433, China
Abstract:
Flavonoids, especially chalcones such as hydroxysafflor yellow A and carthamin are the main active ingredients of safflower. To study the biosynthesis pathway of safflower flavonoids is of great significance for the quality control of safflower. Chalcone synthase (CHS) is an enzyme that plays an important role in regulation of the synthesis of flavonoids. However, for the time being, the role of CHS is not yet clear in the biosynthesis of safflower flavonoids. As a plant signaling regulator, JA/MeJA can activate CHS gene expression in plants. CtCHS1, one of the CHS genes in safflower, was elucidated in our previous work. In our continuous search for CtCHSs functions from this plant, other CHS genes CtCHS2 and CtCHS4 in safflower were examined. The floret was stimulated with methyl jasmonate (MeJA) and the transcriptome expression of CtCHS2 and CtCHS4 was analyzed by qRT-PCR at different time points of 0, 3, 6, and 12 h after stimulation. Further metabolites under stimulation by MeJA were analyzed by UHPLC/Q-TOF-MS. The results showed that the expression of CtCHS4 in response to MeJA significantly increased at 3 and 6 h, while the expression of CtCHS2 showed a trend of decrease after induction. Meanwhile, the accumulation of rutin, hydroxysafflor yellow A, D-phenylalanine, kaempferol-3-O-β-rutinoside and carthamin increased obviously. Especially, accumulation of hydroxysafflor yellow A was increased significantly at 3, 6 and 12 h after induction (P ≥ 0.05 or 0.01), but the change in kaempferol, kaempferol-3-O-β-D-glucoside, luteolin, quercetin-3-β-D-glucoside was not significant. The accumulation of hydroxysafflor yellow A and carthamin was positively correlated with the expression abundance of CtCHS4 with Pearson correlation analysis method (r ≥ 0.8). The data suggest that CtCHS4 may be a key gene for forming hydroxysafflor yellow A and carthamin and plays an important role in the accumulation of safflower chalcones. The CtCHS4-pMAL-C5X recombinant vector was successfully expressed in BL21 (DE3) Plys to express the product naringenin in vitro under the catalytic substrates p-coumaryol-COA and malonyl-CoA. The results of this study provide a new insight into synthetic genes involved in flavonoids biosynthetic pathway to elucidate the biosynthesis pathway of safflower chalcones.
Key words:    safflower    CtCHS4    methyl jasmonate    quinonechalcone    hydroxysafflor yellow A   
收稿日期: 2017-11-10
DOI: 10.16438/j.0513-4870.2017-1110
基金项目: 国家自然科学基金资助项目(81473300,81173484);国家"863"项目资助项目(2008AA02Z137).
通讯作者: 高越,Tel:86-10-21-81871302,E-mail:mlguo@126.com;郭美丽,E-mail:gaoyue2000@hotmail.com
Email: mlguo@126.com;gaoyue2000@hotmail.com
相关功能
PDF(599KB) Free
打印本文
0
作者相关文章
何贝轩  在本刊中的所有文章
薛英茹  在本刊中的所有文章
涂燕华  在本刊中的所有文章
高越  在本刊中的所有文章
郭美丽  在本刊中的所有文章

参考文献:
[1] Middleton EJ, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells:implications for inflammation, heart disease, and cancer[J]. Pharmacol Rev, 2000, 52:673-751.
[2] El-Wakeil NE. Botanical pesticides and their mode of action[J]. Gesunde Pflanze, 2013, 65:24.
[3] Ortuño A, Báidez A, Gómez P, et al. Citrus paradisi and Citrus sinensis flavonoids:their influence in the defence mechanism against Penicillium digitatum[J]. Food Chem, 2006, 98:8.
[4] Steinkellner S, Lendzemo V, Langer I, et al. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions[J]. Molecules, 2007, 12:1290-1306.
[5] Sankari SL, Babu NA, Rani V, et al. Flavonoids-clinical effects and applications in dentistry:a review[J]. J Pharm Bioallied Sci, 2014, 6:S26-29.
[6] Giannasi DE. Systematic aspects of flavonoid biosynthesis and evolution[J]. Bot Rev, 1978, 44:399-429.
[7] Gutha LR, Casassa LF, Harbertson JF, et al. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves[J]. BMC Plant Biol, 2010, 10:187.
[8] Wang W, Jin M, Tong J, et al. Inhibitory effect of hydroxy-safflor yellow A against PMN activation induced by LPS[J]. Acta Pharm Sin (药学学报), 2011, 46:153-157.
[9] Wang XF, Jin M, Tong J, et al. Protective effect of hydroxy-safflor yellow A against acute lung injury induced by oleic acid and lipopolysaccharide in rats[J]. Acta Pharm Sin (药学学报), 2010, 45:940-944.
[10] Sadeghi M, Dehghan S, Fischer R, et al. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius[J]. Plant Signal Behav, 20138:e27335.
[11] Cao S, Zhou XR, Wood CC, et al. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.)[J]. BMC Plant Biol, 2013, 13:5.
[12] Dehghan S, Sadeghi M, Poppel A, et al. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius[J]. Biosci Rep, 201434:e00114.
[13] Guo DD, Xue YR, Li D, et al. Overexpression of CtCHS1 increases accumulation of quinochalcone in safflower[J]. Front Plant Sci, 2017, 8:1409.
[14] Tu YH, Liu F, Guo DD, et al. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation[J]. BMC Plant Biol, 2016, 16:132.
[15] Guo DD, Liu F, Tu YH, et al. Expression patterns of three UGT genes in different chemotype safflower lines and under MeJA stimulus revealed their potential role in flavonoid biosynthesis[J]. PLoS One, 2016, 11:e0158159
[16] Reimold U, Kroger M, Kreuzaler F, et al. Coding and 3' non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme[J]. EMBO J, 1983, 2:1801-1805.
[17] Koes RE, Spelt CE, van den Elzen PJ, et al. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida[J]. Gene, 1989, 81:245-257.
[18] Durbin ML, McCaig B, Clegg MT. Molecular evolution of the chalcone synthase multigene family in the morning glory genome[J]. Plant Mol Biol, 2000, 42:79-92.
[19] Akada S, Kung SD, Dube SK. Nucleotide sequence of a soybean chalcone synthase gene with a possible role in ultraviolet-B sensitivity, Gmchs6[J]. Plant Physiol, 1993, 102:699-701.
[20] Hai L. Cloning and sequence analysis of chalcone synthase gene in Polygonum multiflorum Thunb[J]. J Anhui Agric Sci (安徽农业科学), 2009, 15:129.
[21] Koduri PK, Gordon GS, Barker EI, et al. Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens[J]. Plant Mol Biol, 2010, 72:247-263.
[22] Jiang C, Schommer CK, Kim SY, et al. Cloning and charac-terization of chalcone synthase from the moss, Physcomitrella patens[J]. Phytochemistry, 2006, 67:2531-2540.
[23] Sparvoli F, Martin C, Scienza A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.)[J]. Plant Mol Biol, 1994, 24:743-755.
[24] Helariutta Y, Elomaa P, Kotilainen M, et al. Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae)[J]. Plant Mol Biol, 1995, 28:47-60.
[25] Liu YL, Lou Q, Xu WR, et al. Characterization of a chalcone synthase (CHS) flower-specific promoter from Lilium orential ‘Sorbonne’[J]. Plant Cell Rep, 2011, 30:2187-2194.
[26] Wang WK, Schaal BA, Chiou YM, et al. Diverse selective modes among orthologs/paralogs of the chalcone synthase (Chs) gene family of Arabidopsis thaliana and its relative A-halleri ssp gemmifera[J]. Mol Phylogen Evol, 2007, 44:503-520.
[27] Shinozaki J, Kenmoku H, Nihei K, et al. Cloning and functional analysis of three chalcone synthases from the flowers of safflowers Carthamus tinctorius[J]. Nat Prod Commun, 2016, 11:787-790.
[28] Diallo AO, Agharbaoui Z, Badawi MA, et al. Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat[J]. J Exp Bot, 2014, 65:2271-2286.
[29] Staswick PE, Su W, Howell SH. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant[J]. Proc Natl Acad Sci USA, 1992, 89:6837-6840.
[30] Concha CM, Figueroa NE, Poblete LA, et al. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit[J]. Plant Physiol Biochem, 2013, 70:433-444.
[31] Richard S, Lapointe G, Rutledge RG, et al. Induction of chalcone synthase expression in white spruce by wounding and jasmonate[J]. Plant Cell Physiol, 2000, 41:982-987.
[32] Wang SY, Bowman L, Ding M. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells[J]. Food Chem, 2008, 107:1261-1269.
[33] Nopo-Olazabal C, Condori J, Nopo-Olazabal L, et al. Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide[J]. Plant Physiol Biochem, 2014, 74:50-69.
[34] Tan JF, Tu LL, Deng FL, et al. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin[J]. Plant Physiol, 2013, 162:86-95.
[35] Beuerle T, Pichersky E. Enzymatic synthesis and purification of aromatic coenzyme a esters[J]. Anal Biochem, 2002, 302:305-312.
[36] Tu YH, Xue YR, Guo DD, et al. Carthami flos:a review of its ethnopharmacology, pharmacology and clinical applications[J]. Rev Bras Farmacogn, 2015, 25:553-566.
[37] Wu YY, Chen CP, Ren CX, et al. Correlation between accumulation of flavoneand expression of functional genes in Carthamus tinctorius[J]. China J Chin Mater Med (中国中药杂志), 2017, 42:83-87.
[38] Lewis DR, Ramirez MV, Miller ND, et al. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks[J]. Plant Physiol, 2011, 156:144-164.
[39] Lu Y, Chen Q, Bu Y, et al. Flavonoid accumulation plays an important role in the rust resistance of malus plant leaves[J]. Front Plant Sci, 2017, 8:1286.
[40] Cavallini E, Matus JT, Finezzo L, et al. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine[J]. Plant Physiol, 2015, 167:1448-1552.
[41] Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment[J]. Molecules, 2014, 19:16240-16265.
[42] Ito M, Ichinose Y, Kato H, et al. Molecular evolution and functional relevance of the chalcone synthase genes of pea[J]. Mol Gen Genet, 1997, 255:28-37.
[43] Du F, Fan JM, Wang T, et al. Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid ‘Sorbonne’ and putative control network for scent genes[J]. BMC Genomics, 2017, 18:899.
[44] Mariz-Ponte N, Mendes RJ, Sario S, et al. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation:a contribution to the use of UV-A/B in horticulture[J]. J Plant Physiol, 2017, 221:32-42.
[45] Merkle T, Frohnmeyer H, Schulze-Lefert P, et al. Analysis of the parsley chalcone-synthase promoter in response to different light qualities[J]. Planta, 1994, 193:275-282.
[46] Raharjo TJ, Chang WT, Verberne MC, et al. Cloning and over-expression of a cDNA encoding a polyketide synthase from Cannabis sativa[J]. Plant Physiol Biochem, 2004, 42:291-297.
[47] Lei W, Tang SH, Luo KM, et al. Molecular cloning and expression profiling of a chalcone synthase gene from hairy root cultures of Scutellaria viscidula Bunge[J]. Genet Mol Biol, 2010, 33:285-291.