药学学报, 2018, 53(9): 1442-1448
引用本文:
宋勇丽, 王政霖, 邢玮, 吴晏, 王伟, 韩静. 基于网络药理学的复方血栓通治疗糖尿病视网膜病的药理机制研究[J]. 药学学报, 2018, 53(9): 1442-1448.
SONG Yong-li, WANG Zheng-lin, XING Wei, WU Yan, WANG Wei, HAN Jing. Pharmacological mechanism of Compound Xueshuantong in treatment of diabetic retinopathy based on network pharmacology[J]. Acta Pharmaceutica Sinica, 2018, 53(9): 1442-1448.

基于网络药理学的复方血栓通治疗糖尿病视网膜病的药理机制研究
宋勇丽1, 王政霖1, 邢玮1, 吴晏2, 王伟1, 韩静2
1. 北京中医药大学 中医学院, 北京 100029;
2. 北京中医药大学 北京中医药研究院, 北京 100029
摘要:
利用网络药理学发现复方血栓通治疗糖尿病视网膜病的药理机制。采用TCMSP软件检索复方血栓通的活性成分,并且得到其活性成分对应的靶点;然后通过OMIM、TTD、pharmGkb、DiGSeE和GAD 5个数据库检索糖尿病视网膜病相关靶点;两者取交集得到37个相同的靶点。用SystemsDock在线分子对接工具验证结果。使用DAVID软件对37个靶点进行GO注释分析和KEGG通路分析。采用Cytoscape 3.6.1软件建立活性成分-靶点-通路网络模型。网络药理学研究提示,复方血栓通可能通过血管内皮生长因子信号通路、丝裂原活化蛋白激酶信号通路和Toll样受体信号通路等多个通路治疗糖尿病视网膜病,体现了中药复方多成分、多靶点、多通路的特点。此研究为进一步阐释复方血栓通治疗糖尿病视网膜病的药理机制提供了理论依据。
关键词:    网络药理学      复方血栓通      糖尿病视网膜病      靶点     
Pharmacological mechanism of Compound Xueshuantong in treatment of diabetic retinopathy based on network pharmacology
SONG Yong-li1, WANG Zheng-lin1, XING Wei1, WU Yan2, WANG Wei1, HAN Jing2
1. School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
2. Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
Abstract:
The aim of this study was to discover the pharmacological mechanism of Compound Xueshuantong in the treatment of diabetic retinopathy using network pharmacology. TCMSP software was used to search the active ingredients of Compound Xueshuantong, and the targets of its active ingredients were obtained. The targets of diabetic retinopathy were searched by OMIM, TTD, pharmGkb, DiGSeE and GAD database. The same 37 targets were analyzed by GO and KEGG using DAVID software. The results were verified using the SystemsDock. Cytoscape 3.6.1 software was used to establish an ingredient-target-pathway network model. Network pharmacological studies suggest that Compound Xueshuantong treated diabetic retinopathy through the vascular endothelial growth factor signaling pathways, mitogen-activated protein kinase signaling pathways and Toll-like receptor signaling pathways. Compound Xueshuantong alleviated diabetic retinopathy through multi-component, multi-target, and multi-pathway. This study provides a theoretical basis for further elucidation of the pharmacological mechanism of Compound Xueshuantong in the treatment of diabetic retinopathy.
Key words:    network pharmacology    Compound Xueshuantong    diabetic retinopathy    target   
收稿日期: 2018-03-28
DOI: 10.16438/j.0513-4870.2018-0270
基金项目: 国家自然科学基金资助项目(81673705).
通讯作者: 韩静,Tel:86-10-64286404,E-mail:hanjing8585@163.com
Email: hanjing8585@163.com
相关功能
PDF(358KB) Free
打印本文
0
作者相关文章
宋勇丽  在本刊中的所有文章
王政霖  在本刊中的所有文章
邢玮  在本刊中的所有文章
吴晏  在本刊中的所有文章
王伟  在本刊中的所有文章
韩静  在本刊中的所有文章

参考文献:
[1] Jin Y. Effect of traditional Chinese medicine of Qi and dissipating blood stasis on non-proliferative diabetic retinopathy and its effect on VEGF, Ang and ANGPT[J]. Mod J Integr Trad Chin West Med (现代中西医结合杂志), 2017, 35:3923-3926.
[2] Xiang PP, Xu W. Research progress on traditional Chinese medicine treatment of diabetic retinopathy[J]. China J Trad Chin Med Pharm (中华中医药杂志), 2014, 29:813-815.
[3] Huang CX, Qiang Y, Xiao C, et al. Study on prevention and treatment of Fufang Xueshitong capsule on retinal microvascular changes in diabetic rats[J]. Chin J Ocul Fundus Dis (中华眼底病杂志), 2008, 24:272-275.
[4] Jing C, Du JH, Sun ZH. Progress of Compound Xueshuantong in treating diabetic retinopathy[J]. Chin J Clin (Electron Edit) (中华临床医师杂志, 电子版), 2012, 22:7373-7375.
[5] Xu JJ, Mei BY, Nan Z. Clinical observation on early diabetic retinopathy with Compound Xueshuantong Capsule[J]. China J Tradit Chin Med Pharm (中华中医药杂志), 2012, 27:3247-3249.
[6] Li S, Zhang B, Jiang D, et al. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae[J]. BMC Bioinformatics, 2011, 11:S6.
[7] Cheng BF, Hou YY, Min J, et al. Anti-inflammatory mechanism of Qingfei Xiaoyan Wan studied with network pharmacology[J]. Acta Pharm Sin (药学学报), 2013, 4:686-693.
[8] Liu XK, Wu JR, Lin MJ, et al. Mechanism of Si Junzitang based on network pharmacology[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2017, 23:194-202.
[9] Yao G, Li G, Gao XX, et al. An exploration in the action targets for antidepressant bioactive components of Xiaoyaosan based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2015, 50:1589-1595.
[10] Sun Z, Hu YR, Zuo LH, et al. Simultaneous determination of 9 components in Compound Xueshuantong capsules by UPLC-MS/MS[J]. China Pharm (中国药房), 2017, 28:2959-2963.
[11] Hopkins AL. Network pharmacology:the next paradigm in drug discovery[J]. Nat Chem Biol, 2008, 4:682-690.
[12] Song E, Xu Q, Wang XR, et al. Expression of vascular endothelial growth factor in the retina of diabetic rats[J]. J Jilin Univ (Med Edit) (吉林大学学报,医学版), 2003, 29:38-40, 44.
[13] Zhao M, Li CH, Liu YL. Toll-like receptor (TLR)-2/4 expression in retinal ganglion cells in a high-glucose environment and its implications[J]. Genet Mol Res, 2016. DOI:10.4238/gmr.15026998.
[14] Du Y, Tang J, Li G, et al. Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function[J]. Invest Ophthalmol Vis Sci, 2010, 51:2158-2164.
[15] Dong Y, Zhang MC. Effect of COX-2 and its inhibitor celcoxib on corneal neovascularization[J]. Chin Ophthal Res (眼科研究), 2007, 25:424-427.
[16] Matsumoto T, Turesson I, Book M, et al. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis[J]. J Cell Biol, 2002, 156:149-160.
[17] Seghezzi G, Patel S, Ren CJ, et al. Fib roblast growth factor-2(FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries:an autocrine mechanism contributing to angiogenesis[J]. J Cell Biol, 1998, 141:1659-1673.
[18] Li W, Liu Q, He L, et al. Effect of ursolic acid on proliferation of vascular endothelial cells and relevant mechanism[J]. Chin J Biol (中国生物制品学杂志), 2011, 24:157-162, 168.
[19] Chen B, He T, Xing YQ, et al. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy[J]. Exp Ther Med, 2017, 14:6022-6026.
[20] Zhang Li, Zhu QY, Wei YF, et al. Effect of quercetin on the expression of VEGF and COX-2 in prostate cancer PC3 cells[J]. J New Chin Med (新中医), 2012, 44:125-127.
[21] Yoon HY, Lee EG, Lee H, et al. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs[J]. Int J Mol Med, 2013, 32:971-977.
相关文献:
1.时悦, 姚璎珈, 蔺莹, 梁喜才, 倪颖男, 吴雨桐, 杨静娴.基于网络药理学的开心散治疗阿尔茨海默病的作用机制分析[J]. 药学学报, 2018,53(9): 1458-1466
2.吴丹, 高耀, 向欢, 邢婕, 韩雨梅, 秦雪梅, 田俊生.基于网络药理学的柴胡抗抑郁作用机制研究[J]. 药学学报, 2018,53(2): 210-219
3.赵蕾, 武嫣斐, 高耀, 向欢, 秦雪梅, 田俊生.基于网络药理学的百合地黄汤干预心理亚健康作用机制研究[J]. 药学学报, 2017,52(1): 99-105
4.许律捷, 姜雯, 庞晓丛, 康德, 熊婉迪, 刘睿, 邢建国, 刘艾林, 杜冠华.复方一枝蒿抗流感有效成分的网络药理学研究[J]. 药学学报, 2017,52(5): 745-752
5.陈建丽, 高耀, 秦雪梅, 田俊生.基于网络药理学的复方柴归方超临界CO2萃取组分的抗抑郁作用机制[J]. 药学学报, 2016,51(3): 388-395
6.高耀, 高丽, 高晓霞, 周玉枝, 秦雪梅, 田俊生.基于网络药理学的逍遥散抗抑郁活性成分作用靶点研究[J]. 药学学报, 2015,50(12): 1589-1595
7.白雨, 范雪梅, 孙瀚, 王义明, 梁琼麟, 罗国安.基于网络药理学的罗格列酮复方作用机制探讨[J]. 药学学报, 2015,50(3): 284-290