药学学报, 2018, 53(9): 1467-1476
引用本文:
孔令雷, 马寅仲, 李莉, 陈燕霞, 杜冠华. 脑卒中溶栓后出血转化的发生机制及治疗药物研究进展[J]. 药学学报, 2018, 53(9): 1467-1476.
KONG Ling-lei, MA Yin-zhong, LI Li, CHEN Yan-xia, DU Guan-hua. Advances in the study of mechanism of thrombolysis-induced hemorrhagic transformation and therapeutic drugs[J]. Acta Pharmaceutica Sinica, 2018, 53(9): 1467-1476.

脑卒中溶栓后出血转化的发生机制及治疗药物研究进展
孔令雷1, 马寅仲2, 李莉1, 陈燕霞3, 杜冠华1
1. 中国医学科学院、北京协和医学院药物研究所, 北京市药物靶点研究与药物筛选重点实验室, 北京 100050;
2. 中国科学院深圳先进技术研究院, 广东 深圳 518055;
3. 包头医学院, 内蒙 包头 014060
摘要:
出血转化(hemorrhagic transformation,HT)是急性脑卒中及其溶栓治疗的主要并发症,是组织纤溶酶原激活剂(tissue plasminogen activator,t-PA)溶栓后致死和致残的主要原因。使用t-PA溶栓可以使HT的发生率增加10倍,死亡率达60%。较窄的治疗时间窗及较高的HT发生率限制了t-PA的临床应用,只有约3.4%~5.2%的急性脑卒中患者能够接受t-PA治疗。由于HT发生机制和治疗靶点不明,临床尚无有效防治药物。HT发生的主要机制是血脑屏障的完整性丧失和神经血管稳态的破坏,涉及多种分子信号通路。在动物及临床研究中已经发现一些药物与t-PA联用能够降低HT的发生,增加溶栓治疗的安全性。本文就近年来溶栓引起HT的发生机制、靶点和治疗药物进行综述,为HT的基础研究及药物研发提供参考。
关键词:    脑卒中      出血转化      组织纤溶酶原激活剂      血脑屏障     
Advances in the study of mechanism of thrombolysis-induced hemorrhagic transformation and therapeutic drugs
KONG Ling-lei1, MA Yin-zhong2, LI Li1, CHEN Yan-xia3, DU Guan-hua1
1. Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
3. BaoTou Medical College, Baotou 014060, China
Abstract:
Hemorrhagic transformation (HT) is a common complication of ischemic stroke, especially after thrombolytic therapy, which is associated with increased morbidity and mortality. Thrombolysis with tissue plasminogen activator (t-PA) increases the rate of HT by as much as 10-fold, and the mortality by about 60%. The patients who are eligible for t-PA treatment are still between 3.4% and 5.2% of all patients with acute ischemic stroke because of the narrow therapeutic time window. Due to the unknown mechanism and therapeutic target of HT, there are no effective drugs to decrease the incidence of HT. The main mechanism of HT is disruption of the blood-brain barrier (BBB) integrity and neurovascular homeostasis, involving a variety of molecular signaling pathways. In animal and clinical studies, combining therapeutic agents with t-PA, which may help to minimize BBB perturbations, reduces the incidence of HT and increases the safety of thrombolytic therapy. This article is prepared to review the mechanisms, targets and therapeutic drugs of t-PA induced HT in recent years to provide a reference to the basic research and drug development of HT.
Key words:    stroke    hemorrhagic transformation    tissue plasminogen activator    blood-brain barrier   
收稿日期: 2018-04-03
DOI: 10.16438/j.0513-4870.2018-0296
基金项目: 国家重点研发计划资助项目(2016YFC1000905);中国医学科学院医学与健康科技创新工程(2016-I2M-3-007);北京市自然科学基金面上项目(7182113);“重大新药创制”科技重大专项(2018ZX09711001-009-009).
通讯作者: 杜冠华,Tel/Fax:86-10-63165184,E-mail:dugh@imm.ac.cn
Email: dugh@imm.ac.cn
相关功能
PDF(262KB) Free
打印本文
0
作者相关文章
孔令雷  在本刊中的所有文章
马寅仲  在本刊中的所有文章
李莉  在本刊中的所有文章
陈燕霞  在本刊中的所有文章
杜冠华  在本刊中的所有文章

参考文献:
[1] Zhu Z, Fu Y, Tian D, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke:a pilot trial[J]. Circulation, 2015, 132:1104-1112.
[2] Jickling GC, Liu D, Stamova B, et al. Hemorrhagic transformation after ischemic stroke in animals and humans[J]. J Cereb Blood Flow Metab, 2014, 34:185-199.
[3] Zhang J, Yang Y, Sun H, et al. Hemorrhagic transformation after cerebral infarction:current concepts and challenges[J]. Ann Transl Med, 2014, 2:81.
[4] Wang W, Li M, Chen Q, et al. Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke:mechanisms, models, and biomarkers[J]. Mol Neurobiol, 2015, 52:1572-1579.
[5] Suzuki Y, Nagai N, Umemura K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia[J]. Front Cell Neurosci, 2016, 10:2.
[6] Zhao Y, Li D, Zhao J, et al. The role of the low-density lipoprotein receptor-related protein 1(LRP-1) in regulating blood-brain barrier integrity[J]. Rev Neurosci, 2016, 27:623-634.
[7] Yepes M, Sandkvist M, Moore EG, et al. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein[J]. J Clin Invest, 2003, 112:1533-1540.
[8] Wang X, Lee SR, Arai K, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator[J]. Nat Med, 2003, 9:1313-1317.
[9] Zhang X, Polavarapu R, She H, et al. Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein mediate cerebral ischemia-induced nuclear factor-κB pathway activation[J]. Am J Pathol, 2007, 171:1281-1290.
[10] Zhang C, An J, Haile WB, et al. Microglial low-density lipoprotein receptor-related protein 1 mediates the effect of tissuetype plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain[J]. J Cereb Blood Flow Metab, 2009, 29:1946-1954.
[11] Martin AM, Kuhlmann C, Trossbach S, et al. The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of Nmethyl-D-aspartate receptors[J]. J Biol Chem, 2008, 283:12004-12013.
[12] Liu D, Cheng T, Guo H, et al. Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C[J]. Nat Med, 2004, 10:1379-1383.
[13] Cheng T, Petraglia AL, Li Z, et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage[J]. Nat Med, 2006, 12:1278-1285.
[14] Wang Y, Zhao Z, Chow N, et al. Activated protein C analog protects from ischemic stroke and extends the therapeutic window of tissue-type plasminogen activator in aged female mice and hypertensive rats[J]. Stroke, 2013, 44:3529-3536.
[15] Mendioroz M, Fernández-Cadenas I, Alvarez-Sabín J, et al. Endogenous activated protein C predicts hemorrhagic transformation and mortality after tissue plasminogen activator treatment in stroke patients[J]. Cerebrovasc Dis, 2009, 28:143-150.
[16] Wang Y, Zhao Z, Chow N, et al. Activated protein C analog promotes neurogenesis and improves neurological outcome after focal ischemic stroke in mice via protease activated receptor 1[J]. Brain Res, 2013, 1507:97-104.
[17] Fredriksson L, Li H, Fieber C, et al. Tissue plasminogen activator is a potent activator of PDGF-CC[J]. EMBO J, 2004, 23:3793-3802.
[18] Su EJ, Fredriksson L, Geyer M, et al. Activation of PDGFCC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke[J]. Nat Med, 2008, 14:731-737.
[19] Rodríguez-González R, Blanco M, Rodríguez-Yáñez M, et al. Platelet derived growth factor-CC isoform is associated with hemorrhagic transformation in ischemic stroke patients treated with tissue plasminogen activator[J]. Atherosclerosis, 2013, 226:165-171.
[20] Nicole O, Docagne F, Ali C, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptormediated signaling[J]. Nat Med, 2001, 7:59-64.
[21] Fernández-Monreal M, López-Atalaya JP, Benchenane K, et al. Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling[J]. J Biol Chem, 2004, 279:50850-50856.
[22] Henry VJ, Lecointre M, Laudenbach V, et al. High t-PA release by neonate brain microvascular endothelial cells under glutamate exposure affects neuronal fate[J]. Neurobiol Dis, 2013, 50:201-208.
[23] Rodier M, Prigent-Tessier A, Béjot Y, et al. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin-or NMDA-dependent mechanism?[J]. PLoS One, 2014, 9:e92416.
[24] Sifat AE, Vaidya B, Abbruscato TJ. Blood-brain barrier protection as a therapeutic strategy for acute ischemic stroke[J]. AAPS J, 2017, 19:957-972.
[25] Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke:critical role of matrix metalloproteinases and tissue-type plasminogen activator[J]. Neurobiol Dis, 2010, 38:376-385.
[26] Zhang L, Zhang ZG, Chopp M. The neurovascular unit and combination treatment strategies for stroke[J]. Trends Pharmacol Sci, 2012, 33:415-422.
[27] Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis associated hemorrhagic transformation after embolic focal ischemia in rats[J]. Stroke, 2002, 33:831-836.
[28] Murata Y, Rosell A, Scannevin RH, et al. Extension of the thrombolytic time window with minocycline in experimental stroke[J]. Stroke, 2008, 39:3372-3377.
[29] Okamura K, Tsubokawa T, Johshita H, et al. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia[J]. Neurol Res, 2014, 36:65-69.
[30] Lapchak PA, Araujo DM, Song D, et al. Effects of the spin trap agent disodium-[tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) on intracerebral hemorrhage in a rabbit large clot embolic stroke model:combination studies with tissue plasminogen activator[J]. Stroke, 2002, 33:1665-1670.
[31] Campos F, Qin T, Castillo J, et al. Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model[J]. Stroke, 2013, 44:505-511.
[32] Maeda M, Furuichi Y, Noto T, et al. Tacrolimus (FK506) suppresses rt-PA-induced hemorrhagic transformation in a rat thrombotic ischemia stroke model[J]. Brain Res, 2009, 1254:99-108.
[33] Chen H, Guan B, Chen X, et al. Baicalin attenuates blood-brain barrier disruption and hemorrhagic transformation and improves neurological outcome in ischemic stroke rats with delayed t-PA treatment:involvement of ONOO——MMP-9 pathway[J]. Transl Stroke Res, 2017. DOI:10.1007/s12975-017-0598-3.
[34] Tang C, Xue H, Bai C, et al. The effects of tanshinone ⅡA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats[J]. Phytomedicine, 2010, 17:1145-1149.
[35] Wang ZF, Wang J, Zhang HY, et al. Huperzine A exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia[J]. J Neurochem, 2008, 106:1594-1603.
[36] Ishiguro M, Mishiro K, Fujiwara Y, et al. PhosphodiesteraseⅢ inhibitor prevents hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA[J]. PLoS One, 2010, 5:e15178.
[37] Kwon I, An S, Kim J, et al. Hemorrhagic transformation after large cerebral infarction in rats pretreated with dabigatran or warfarin[J]. Stroke, 2017, 48:2865-2871.
[38] Kono S, Yamashita T, Deguchi K, et al. Rivaroxaban and apixaban reduce hemorrhagic transformation after thrombolysis by protection of neurovascular unit in rat[J]. Stroke, 2014, 45:2404-2410.
[39] Li M, Zhang Z, Sun W, et al. 17β-estradiol attenuates breakdown of blood-brain barrier and hemorrhagic transformation induced by tissue plasminogen activator in cerebral ischemia[J]. Neurobiol Dis, 2011, 44:277-283.
[40] Won S, Lee JH, Wali B, et al. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats:involvement of the VEGF-MMP pathway[J]. J Cereb Blood Flow Metab, 2014, 34:72-80.
[41] Chen TY, Lee MY, Chen HY, et al. Melatonin attenuates the post ischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice[J]. J Pineal Res, 2006, 40:242-250.
[42] Ishiguro M, Kawasaki K, Suzuki Y, et al. A Rho kinase (ROCK) inhibitor, fasudil, prevents matrix metalloproteinase-9-related hemorrhagic transformation in mice treated with tissue plasminogen activator[J]. Neuroscience, 2012, 220:302-312.
[43] Campos M, García-Bonilla L, Hernández-Guillamon M, et al. Combining statins with tissue plasminogen activator treatment after experimental and human stroke:a safety study on hemorrhagic transformation[J]. CNS Neurosci Ther, 2013, 19:863-870.
[44] Turner RJ, Sharp FR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke[J]. Front Cell Neurosci, 2016, 10:56.
[45] Lakhan SE, Kirchgessner A, Tepper D, et al. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke[J]. Front Neurol, 2013, 4:32.
[46] Suzuki Y, Nagai N, Umemura K, et al. Stromelysin-1(MMP-3) is critical for intracranial bleeding after t-PA treatment of stroke in mice[J]. J Thromb Haemost, 2007, 5:1732-1739.
[47] Kimura K, Aoki J, Sakamoto Y, et al. Administration of edaravone, a free radical scavenger, during t-PA infusion can enhance early recanalization in acute stroke patients -a preliminary study[J]. J Neurol Sci, 2012, 313:132-136.
[48] Lee XR, Xiang GL. Effects of edaravone, the free radical scavenger, on outcomes in acute cerebral infarction patients treated with ultra-early thrombolysis of recombinant tissue plasminogen activator[J]. Clin Neurol Neurosurg, 2018, 167:157-161.
[49] Yamaguchi T, Awano H, Matsuda H, et al. Edaravone with and without.6 mg·kg-1 alteplase within 4.5 hours after ischemic stroke:a prospective cohort study (PROTECT4.5)[J]. J Stroke Cerebrovasc Dis, 2017, 26:756-765.
[50] Lees KR, Zivin JA, Ashwood T, et al. NXY-059 for acute ischemic stroke[J]. N Engl J Med, 2006, 354:588-600.
[51] Shuaib A, Lees KR, Lyden P, et al. NXY-059 for the treatment of acute ischemic stroke[J]. N Engl J Med, 2007, 357:562-571.
[52] Li R, Huang C, Chen J, et al. The role of uric acid as a potential neuroprotectant in acute ischemic stroke:a review of literature[J]. Neurol Sci, 2015, 36:1097-1103.
[53] Amaro S, Laredo C, Renú A, et al. Uric acid therapy prevents early ischemic stroke progression:a tertiary analysis of the URICO-ICTUS trial (efficacy study of combined treatment with uric acid and r-tPA in acute ischemic stroke)[J]. Stroke, 2016, 47:2874-2876.
[54] Okubo S, Igarashi H, Kanamatsu T, et al. FK-506 extended the therapeutic time window for thrombolysis without increasing the risk of hemorrhagic transformation in an embolic rat stroke model[J]. Brain Res, 2007, 1143:221-227.
[55] Chen HS, Qi SH, Shen JG. One-compound-multi-target:combination prospect of natural compounds with thrombolytic therapy in acute ischemic stroke[J]. Curr Neuropharmacol, 2017, 15:134-156.
[56] Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia:a review[J]. Aging Dis, 2017, 8:850-867.
[57] Li DC, Bao XQ, Sun H, et al. Research progress in the study of protective effect of tanshinone ⅡA on cerebral ischemic stroke[J]. Acta Pharm Sin (药学学报), 2015, 50:635-639.
[58] Wang R, Yan H, Tang XC. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine[J]. Acta Pharmacol Sin, 2006, 27:1-26.
[59] Ma YZ, Li L, Kong LL, et al. Pinocembrin protects bloodbrain barrier function and expands the therapeutic time window for tissue-type plasminogen activator treatment in a rat thromboembolic stroke model[J]. Biomed Res Int, 2018. DOI:10.1155/2018/8943210.
[60] Shinohara Y, Katayama Y, Uchiyama S, et al. Cilostazol for prevention of secondary stroke (CSPS 2):an aspirin-controlled, double-blind, randomised non-inferiority trial[J]. Lancet Neurol, 2010, 9:959-968.
[61] Adeoye O, Sucharew H, Khoury J, et al. Recombinant tissue-type plasminogen activator plus eptifibatide versus recombinant tissue-type plasminogen activator alone in acute ischemic stroke:propensity score-matched post hoc analysis[J]. Stroke, 2015, 46:461-464.
[62] Siebler M, Hennerici MG, Schneider D, et al. Safety of tirofiban in acute ischemic stroke:the SaTIS trial[J]. Stroke, 2011, 42:2388-2392.
[63] Zhang L, Zhang ZG, Ding GL, et al. Multitargeted effects of statin-enhanced thrombolytic therapy for stroke with recombinant human tissue-type plasminogen activator in the rat[J]. Circulation, 2005, 112:3486-3494.
[64] Meier N, Nedeltchev K, Brekenfeld C, et al. Prior statin use, intracranial hemorrhage, and outcome after intra-arterial thrombolysis for acute ischemic stroke[J]. Stroke, 2009, 40:1729-1737.
[65] García-Culebras A, Palma-Tortosa S, Moraga A, et al. Toll-like receptor 4 mediates hemorrhagic transformation after delayed tissue plasminogen activator administration in in situ thromboembolic stroke[J]. Stroke, 2017, 48:1695-1699.
[66] Wang W, Li M, Wang Y, et al. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats[J]. Mol Neurobiol, 2016, 53:7028-7036.
[67] Merino-Zamorano C, Hernández-Guillamon M, Jullienne A, et al. NURR1 involvement in recombinant tissue-type plasminogen activator treatment complications after ischemic stroke[J]. Stroke, 2015, 46:477-484.
[68] Guo Z, Yu S, Chen X, et al. Suppression of NLRP3 attenuates hemorrhagic transformation after delayed rtPA treatment in thromboembolic stroke rats:involvement of neutrophil recruitment[J]. Brain Res Bull, 2018, 137:229-240.
[69] Cai Y, Liu X, Chen W, et al. TGF-β1 prevents blood-brain barrier damage and hemorrhagic transformation after thrombolysis in rats[J]. Exp Neurol, 2015, 266:120-126.
[70] Yang X, Chu H, Tang Y, et al. The role of connexin43 in hemorrhagic transformation after thrombolysis in vivo and in vitro[J]. Neuroscience, 2016, 329:54-65.
[71] Tuo YH, Liu Z, Chen JW, et al. NADPH oxidase inhibitor improves outcome of mechanical reperfusion by suppressing hemorrhagic transformation[J]. J Neurointerv Surg, 2017, 9:492-498.
[72] Hong JM, Lee JS, Song HJ, et al. Therapeutic hypothermia after recanalization in patients with acute ischemic stroke[J]. Stroke, 2014, 45:134-140.
[73] Cai L, Thibodeau A, Peng C, et al. Combination therapy of normobaric oxygen with hypothermia or ethanol modulates pyruvate dehydrogenase complex in thromboembolic cerebral ischemia[J]. J Neurosci Res, 2016, 94:749-758.
[74] Soejima Y, Hu Q, Krafft PR, et al. Hyperbaric oxygen preconditioning attenuates hyperglycemia-enhanced hemorrhagic transformation by inhibiting matrix metalloproteinases in focal cerebral ischemia in rats[J]. Exp Neurol, 2013, 247:737-743.
[75] Chen CH, Manaenko A, Zhan Y, et al. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model[J]. Neuroscience, 2010, 169:402-414.
[76] Liu H, Wang Y, Xiao Y, et al. Hydrogen sulfide attenuates tissue plasminogen activator-induced cerebral hemorrhage following experimental stroke[J]. Transl Stroke Res, 2016, 7:209-219.
[77] Liou KT, Shen YC, Chen CF, et al. Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production[J]. Brain Res, 2003, 992:159-166.
[78] Cui HS, Huang LS, Sok DE, et al. Protective action of honokiol, administered orally, against oxidative stress in brain of mice challenged with NMDA[J]. Phytomedicine, 2007, 14:696-700.