药学学报, 2018, 53(9): 1484-1492
引用本文:
沈佳佳, 陈婉婷, 丁娅. 具有精确原子数的金纳米簇的制备及其应用[J]. 药学学报, 2018, 53(9): 1484-1492.
SHEN Jia-jia, CHEN Wan-ting, DING Ya. Preparation and applications of gold nanoclusters with precise atom number[J]. Acta Pharmaceutica Sinica, 2018, 53(9): 1484-1492.

具有精确原子数的金纳米簇的制备及其应用
沈佳佳, 陈婉婷, 丁娅
中国药科大学, 药物质量与安全预警教育部重点实验室, 江苏 南京 210009
摘要:
金纳米簇(gold nanoclusters,AuNCs)是粒径小于2 nm (不含配体外壳)或组成金原子数小于150的金原子聚集体。由于其具有特异的小尺寸效应、荧光性质和催化活性而被广泛研究。本文总结了采用不同生物分子和化学合成分子作为配体,制备具有精确原子数的金纳米簇的方法;讨论了在制备过程中不同因素对制备产物的影响;介绍了含有精确原子数的金纳米簇在分析物检测、催化、生物成像和药物递送中的相关应用,为金纳米簇的制备技术和生物医学的研究和应用提供参考。
关键词:    金纳米簇      配体      精确原子数      制备方法      生物医学应用     
Preparation and applications of gold nanoclusters with precise atom number
SHEN Jia-jia, CHEN Wan-ting, DING Ya
Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
Abstract:
Gold nanoclusters (AuNCs) are gold atom aggregates less than 2 nm (excluding the ligand shell) or 150 atoms. It has been widely studied due to its small size effect, fluorescence property, and catalytic activity. In this review, research progress in the preparation of gold nanoclusters containing accurate atom numbers using biomolecules and chemically synthesized molecules as ligands have been summarized. The factors that affect the preparation of gold nanoclusters have been discussed. The applications of AuNCs having accurate atomic numbers in the fields of analyte assay, catalysis, bioimaging, and drug delivery have been introduced. This review provides references to the further researches on the preparation technology and biomedical applications of AuNCs.
Key words:    gold nanocluster    ligand    accurate atom number    preparation method    biomedical application   
收稿日期: 2018-04-17
DOI: 10.16438/j.0513-4870.2018-0350
基金项目: 国家自然科学基金资助项目(90612002).
通讯作者: 丁娅,Tel/Fax:86-25-83271326,E-mail:dingya@cpu.edu.cn
Email: dingya@cpu.edu.cn
相关功能
PDF(314KB) Free
打印本文
0
作者相关文章
沈佳佳  在本刊中的所有文章
陈婉婷  在本刊中的所有文章
丁娅  在本刊中的所有文章

参考文献:
[1] Zhu Y, Qian H, Zhu M, et al. Thiolate-protected Aun nanoclusters as catalysts for selective oxidation and hydrogenation processes[J]. Adv Mater, 2010, 22:1915-1920.
[2] Lu Y, Chen W. Subnanometer sized metal clusters:from synthetic challenges to the unique property discoveries[J]. Chem Soc Rev, 2012, 43:3594-3623.
[3] Lu Y, Chen W. Progress in the synthesis and characterization of gold nanoclusters[M]//Mingos DMP. Gold Clusters, Colloids and Nanoparticles I. Cham:Springer Int Publish, 2013:779-783.
[4] Lopezacevedo O, Tsunoyama H, Tsukuda T, et al. Chirality and electronic structure of the thiolate-protected Au38 nanocluster[J]. J Am Chem Soc, 2010, 132:8210-8218.
[5] Zhang L, Han F. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters[J]. Nanotechnology, 2018, 29:165702.
[6] Li G, Jin R. Gold nanocluster-catalyzed semihydrogenation:a unique activation pathway for terminal alkynes[J]. J Am Chem Soc, 2014, 136:11347-11354.
[7] Wang CS, Li JY, Amatore C, et al. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells[J]. Angew Chem, 2011, 123:11848-11852.
[8] Sun J, Jin Y. Fluorescent Au nanoclusters:recent progress and sensing applications[J]. J Mater Chem C, 2014, 2:8000-8011.
[9] Zhang H, Huang X, Li L, et al. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters[J]. Chem Commun, 2012, 48:567-569.
[10] Zhang SS, Feng L, Senanayake RD, et al. Diphosphine-protected ultrasmall gold nanoclusters:opened icosahedral Au13 and heart-shaped Au8 clusters[J]. Chem Sci, 2018, 9:1251-1258.
[11] Yao Q, Yuan X, Fung V, et al. Understanding seed-mediated growth of gold nanoclusters at molecular level[J]. Nat Commun, 2017, 8:927.
[12] Huang R, Chen H, Xia Z. Ultrasonic-microwave heating synthesis and latent fingermarks development of gold nanoclusters[J]. Bull Chem Soc Jap, 2017, 90:754-759.
[13] Helmbrecht C, Lützenkirchenhecht D, Frank W. Microwaveassisted synthesis of water-soluble, fluorescent gold nanoclusters capped with small organic molecules and a revealing fluorescence and X-ray absorption study[J]. Nanoscale, 2015, 7:4978-4983.
[14] Attia YA, Abdel-Hafez SH. One-step synthesis of photoluminescent catalytic gold nanoclusters using organoselenium compounds[J]. New J Chem, 2018, 42:9606-9611.
[15] Shichibu Y, Negishi Y, Tsunoyama H, et al. Extremely high stability of glutathionate-protected Au25 clusters against core etching[J]. Small, 2007, 3:835-839.
[16] Zhang Y, Shuang S, Dong C, et al. Application of HPLC and MALDI-TOF MS for studying as-synthesized ligand-protected gold nanoclusters products[J]. Anal Chem, 2009, 81:1676-1685.
[17] Li Z, Peng H, Liu J, et al. Plant protein-directed synthesis of luminescent gold nanocluster hybrids for tumor imaging[J]. ACS Appl Mater Interfaces, 2018, 10:83-90.
[18] Kong Y, Chen J, Gao F, et al. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters:preparation, characterization, cancer targeting and imaging[J]. Nanoscale, 2013, 5:1009-1017.
[19] Cui M, Zhao Y, Song Q. Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters[J]. Trac Trend Anal Chem, 2014, 57:73-82.
[20] Yao H, Liu B, Mosa IM, et al. Electrocatalytic oxidation of alcohols, tripropylamine, and DNA with ligand-free gold nanoclusters on nitrided carbon[J]. ChemElectroChem, 2016, 3:2100-2109.
[21] Yuan X, Yu Y, Yao Q, et al. Fast synthesis of thiolated Au25 nanoclusters via protection-deprotection method[J]. J Phys Chem Lett, 2012, 3:2310-2314.
[22] Fang J, Zhang B, Yao Q, et al. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters[J]. Coordina Chem Rev, 2016, 322:1-29.
[23] Cao S, Ding S, Liu Y, et al. Biomimetic mineralization of gold nanoclusters as multifunctional thin films for glass nanopore modification, characterization, and sensing[J]. Anal Chem, 2017, 89:7886-7892.
[24] Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. J Am Chem Soc, 2009, 131:888-889.
[25] Richards CI, Choi S, Hsiang JC, et al. Oligonucleotidestabilized Ag nanocluster fluorophores[J]. J Am Chem Soc, 2008, 130:5038-5039.
[26] West AL, Griep MH, Cole DP, et al. DNase 1 retains endodeoxyribonuclease activity following gold nanocluster synthesis[J]. Anal Chem, 2014, 86:7377-7382.
[27] Lystvet SM, Volden S, Singh G, et al. Anticancer activity from gold-alpha-lactalbumin nanoconstructs[J]. J Phys Chem C, 2013, 117:2230-2238.
[28] Yarramala DS, Baksi A, Pradeep T, et al. Green synthesis of protein protected fluorescent gold nanoclusters (AuNCs):reducing the size of AuNCs by partially occupying the Ca2+ site by La3+ in apo-α-lactalbumin[J]. ACS Sustain Chem Eng, 2017, 5:6064-6069.
[29] Baksi A, Xavier PL, Chaudhari K, et al. Protein-encapsulated gold cluster aggregates:the case of lysozyme[J]. Nanoscale, 2013, 5:2009-2016.
[30] Xavier PL, Chaudhari K, Verma PK, et al. Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET[J]. Nanoscale, 2010, 2:2769-2776.
[31] Maity B, Abe S, Ueno T. Observation of gold sub-nanocluster nucleation within a crystalline protein cage[J]. Nat Commun, 2017, 8:14820.
[32] Su L, Shu T, Wang J, et al. Hidden dityrosine residues in protein-protected gold nanoclusters[J]. J Phys Chem C, 2015, 119:12065-12070.
[33] Pinheiro AV, Han D, Shih WM, et al. Challenges and opportunities for structural DNA nanotechnology[J]. Nat Nanotechnol, 2011, 6:763-772.
[34] Chakraborty S, Babanova S, Rocha RC, et al. A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen[J]. J Am Chem Soc, 2015, 137:11678-11687.
[35] Jena NK, Chandrakumar KRS, Ghosh SK. DNA base-gold nanocluster complex as a potential catalyzing agent:an attracttive route for CO oxidation process[J]. J Phys Chem C, 2012, 116:17063-17069.
[36] Jin R. Atomically precise metal nanoclusters:stable sizes and optical properties[J]. Nanoscale, 2015, 7:1549-1565.
[37] Whetten RL, Khoury JT, Alvarez MM, et al. Nanocrystal gold molecules[J]. Adv Mater, 1996, 8:428-433.
[38] Schaaff TG, Knight G, Shafigullin MN, et al. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound[J]. J Phys Chem B, 1998, 102:10643-10646.
[39] Negishi Y, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited:bridging the gap between gold (I)-thiolate complexes and thiolate-protected gold nanocrystals[J]. J Am Chem Soc, 2005, 127:5261-5270.
[40] Yuan X, Zhang B, Luo Z, et al. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolateprotected Au25 nanoclusters with atomic precision[J]. Angew Chem, 2014, 53:4623-4627.
[41] Zhu M, Aikens CM, Hollander FJ, et al. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties[J]. J Am Chem Soc, 2008, 130:5883-5885.
[42] Qian H, Eckenhoff WT, Zhu Y, et al. Total structure determination of thiolate-protected Au38 nanoparticles[J]. J Am Chem Soc, 2010, 132:8280-8281.
[43] Qian H, Zhu Y, Jin R. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters[J]. ACS Nano, 2009, 3:3795-3803.
[44] Qian H, Jin R. Ambient synthesis of Au144(SR)60 nanoclusters in methanol[J]. Chem Mater, 2011, 23:2209-2217.
[45] Qian H, Jin R. Controlling nanoparticles with atomic precision:the case of Au144(SCH2CH2Ph)60[J]. Nano Lett, 2009, 9:4083-4087.
[46] Zeng C, Li T, Das A, et al. Chiral structure of thiolateprotected 28-gold-atom nanocluster determined by X-ray crystallography[J]. J Am Chem Soc, 2013, 135:10011-11013.
[47] Zeng C, Chen Y, Li G, et al. Synthesis of a Au44(SR)28 nanocluster:structure prediction and evolution from Au28(SR)20, Au36(SR)24 to Au44(SR)28[J]. Chem Commun, 2014, 50:55-57.
[48] Jin R, Qian H, Wu Z, et al. Size focusing:a methodology for synthesizing atomically precise gold nanoclusters[J]. J Phys Chem Lett, 2010, 1:2903-2910.
[49] Parker JF, Fieldszinna CA, Murray RW. The story of a monodisperse gold nanoparticle:Au25L18[J]. Acc Chem Res, 2010, 43:1289-1296.
[50] Heaven MW, Dass A, White PS, et al. Crystal structure of the gold nanoparticle[N(C8H17)4] [Au25(SCH2CH2Ph)18] [J]. J Am Chem Soc, 2008, 130:3754-3755.
[51] Akola J, Walter M, Whetten RL, et al. On the structure of thiolate-protected Au25[J]. J Am Chem Soc, 2008, 130:3756-3757.
[52] Shichibu Y, Negishi Y, Tsukuda T, et al. Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters[J]. J Am Chem Soc, 2005, 127:13464-13465.
[53] Zhu M, Lanni E, Garg N, et al. Kinetically controlled, highyield synthesis of Au25 clusters[J]. J Am Chem Soc, 2008, 130:1138-1139.
[54] Green TD, Yi C, Zeng C, et al. Temperature-dependent photoluminescence of structurally-precise quantum-confined Au25(SC8H9)18 and Au38(SC12H25)24 metal nanoparticles[J]. J Phys Chem A, 2014, 118:10611-10621.
[55] Qian H, Zhu M, Andersen UN, et al. Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters[J]. J Phys Chem A, 2009, 113:4281-4284.
[56] Zhang HF, Stender M, Zhang R, et al. Toward the solution synthesis of the tetrahedral Au20 cluster[J]. J Phys Chem B, 2004, 108:12259-12263.
[57] Mckenzie L, Zaikova TO, Hutchison JE. Structurally similar triphenylphosphine-stabilized undecagolds, Au11(PPh3)7Cl3 and[Au11(PPh3)8Cl2] Cl, exhibit distinct ligand exchange pathways with glutathione[J]. J Am Chem Soc, 2014, 136:13426-13435.
[58] Wan XK, Yuan SF, Lin ZW, et al. A chiral gold nanocluster Au20 protected by tetradentate phosphine ligands[J]. Angew Chem, 2014, 126:2967-2970.
[59] Heinecke CL, Ni TW, Malola S, et al. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters[J]. J Am Chem Soc, 2012, 134:13316-13322.
[60] Tran ML, Zvyagin AV, Plakhotnik T. Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters[J]. Chem Commun, 2006, 22:2400-2401.
[61] Duan H, Nie S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers:a new route to fluorescent and water-soluble atomic clusters[J]. J Am Chem Soc, 2007, 129:2412-2413.
[62] Yang X, Shi M, Zhou R, et al. Blending of HAuCl4 and histidine in aqueous solution:a simple approach to the Au10 cluster[J]. Nanoscale, 2011, 3:2596-2601.
[63] Goswami N, Yao Q, Chen T, et al. Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters[J]. Coordin Chem Rev, 2016, 329:1-15.
[64] Yu Y, Chen X, Yao Q, et al. Scalable and precise synthesis of thiolated Au10-12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction[J]. Chem Mater, 2013, 25:946-952.
[65] Yu Y, Luo Z, Teo CS, et al. Tailoring the protein conformation to synthesize different-sized gold nanoclusters[J]. Chem Commun, 2013, 49:9740-9742.
[66] Chen T, Yao Q, Yuan X, et al. Heating or cooling:temperature effects on the synthesis of atomically precise gold nanoclusters[J]. J Phys Chem C, 2015, 121:10743-10751.
[67] Voitekhovich SV, Lesnyak V, Gaponik N, et al. Tetrazoles:unique capping ligands and precursors for nanostructured materials[J]. Small, 2015, 11:5728-5739.
[68] Jung J, Kang S, Han YK. Ligand effects on the stability of thiol-stabilized gold nanoclusters:Au25(SR)18, Au38(SR)24, and Au102(SR)44[J]. Nanoscale, 2012, 4:4206-4210.
[69] Le Guevel X, Tagit O, Rodríguez CE, et al. Ligand effect on the size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters[J]. Nanoscale, 2014, 6:8091-8099.
[70] Mu X, Qi L, Dong P, et al. Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron[J]. Biosens Bioelectron, 2013, 49:249-255.
[71] Sun J, Yang F, Zhao D, et al. Highly sensitive real-time assay of inorganic pyrophosphatase activity based on the fluorescent gold nanoclusters[J]. Anal Chem, 2014, 86:7883-7889.
[72] Cheng TM, Chu HL, Lee YC, et al. Quantitative analysis of glucose metabolic cleavage in glucose transporters overexpressed cancer cells by target-specific fluorescent gold nanoclusters[J]. Anal Chem, 2018, 90:3974-3980.
[73] Nie XT, Qian HF, Ge QJ, et al. CO oxidation catalyzed by oxide-supported Au25(SR)18 nanoclusters and identification of perimeter sites as active centers[J]. ACS Nano, 2012, 6:6014-6022.
[74] Corma A, Concepción P, Boronat M, et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity[J]. Nat Chem, 2013, 5:775-781.
[75] Tao Y, Lin YH, Huang ZZ, et al. Incorporating graphene oxide and gold nanoclusters:a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection[J]. Adv Mater, 2013, 25:2594-2599.
[76] Li S, Nienhaus GU. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging[J]. Biophys Rev, 2012, 4:313-322.
[77] Duan Y, Duan RP, Liu R, et al. Chitosan-stabilized selfassembled fluorescent gold nanoclusters for cell imaging and bio-distribution in vivo[J]. ACS Biomater-Sci Eng, 2018, 4:1055-1063.
[78] Ding CF, Xu YJ, Zhao YN, et al. Fabrication of BSA@AuNCbased nanostructures for cell fluoresce imaging and target drug delivery[J]. ACS Appl Mater Interfaces, 2018, 10:8947-8954.
[79] Govindaraju S, Rengaraj A, Arivazhagan R, et al. Curcuminconjugated gold clusters for bioimaging and anticancer applications[J]. Bioconjugate Chem, 2018, 29:363-370.
[80] Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials[J]. Acta Pharm Sin B, 2016, 6:297-307.
[81] Zhang XD, Luo ZT, Chen J, et al. Ultrasmall glutathioneprotected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance[J]. Sci Rep, 2015, 5:8669.
[82] Fu C, Ding CZ, Sun XC, et al. Curcumin nanocapsules stabilized by bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) for drug delivery and theranosis[J]. Mater Sci Eng C, 2018, 87:149-154.
[83] Yahia-Ammar A, Sierra D, Mérola F, et al. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery[J]. ACS Nano, 2016, 10:2591-2599.
[84] Zhang XD, Wu FG, Liu PD, et al. Synthesis of ultrastable and multifunctional gold nanoclusters with enhanced fluorescence and potential anticancer drug delivery application[J]. J Colloid Interface Sci, 2015, 455:6-15.