药学学报, 2018, 53(10): 1598-1608
引用本文:
邹杨, 刘园, 黄薇, 崔景荣, 金宏威, 张亮仁, 刘振明. STAT3抗肿瘤抑制剂的研究进展[J]. 药学学报, 2018, 53(10): 1598-1608.
ZOU Yang, LIU Yuan, HUANG Wei, CUI Jing-rong, JIN Hong-wei, ZHANG Liang-ren, LIU Zhen-ming. Advances on anti-neoplastic STAT3 inhibitors[J]. Acta Pharmaceutica Sinica, 2018, 53(10): 1598-1608.

STAT3抗肿瘤抑制剂的研究进展
邹杨1, 刘园1, 黄薇1,2, 崔景荣1, 金宏威1, 张亮仁1, 刘振明1
1. 北京大学药学院, 天然药物及仿生药物国家重点实验室, 北京 100191;
2. 中国医学科学院基础医学研究所&北京协和医学院基础学院药理学系, 北京 100005
摘要:
信号转导与转录激活因子3(Signal transducer and activator of transcription 3,STAT3)是一种在细胞中参与大量细胞因子及生长因子应答的信号转导蛋白,负责调控细胞的生长、增殖、分化以及凋亡等一系列重要的生理过程。研究发现,STAT3的持续性活化与肿瘤的发生发展密切相关。抑制STAT3信号通路的异常活化已成为抗肿瘤药物研发的热门靶点之一。本文从作用于STAT3蛋白的N末端结构域、DNA结合域、SH2结构域以及C末端转录活化结构域的角度,总结了近年来STAT3抗肿瘤抑制剂的研究进展。
关键词:    信号转导与转录激活因子3      抗肿瘤      抑制剂      DNA结合域      N末端结构域     
Advances on anti-neoplastic STAT3 inhibitors
ZOU Yang1, LIU Yuan1, HUANG Wei1,2, CUI Jing-rong1, JIN Hong-wei1, ZHANG Liang-ren1, LIU Zhen-ming1
1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
2. Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
Abstract:
Signal transducer and activator of transcription 3 (STAT3) is a kind of signal transduction protein involved in cell proliferation, differentiation, apoptosis and other important physiological processes in response to a large number of cytokines and growth factors in cells. It has been shown that constitutive activation of STAT3 is closely associated with oncogenesis and tumorigenesis. Inhibition of aberrant STAT3 signaling has been one of promising strategies for the development of anti-neoplastic therapeutics. The review summarizes the latest progress of STAT3 inhibitors in recent years from the perspective of targeting N-terminal domain, DNA binding domain, SH2 domain and C-terminal transactivation domain of STAT3.
Key words:    signal transducer and activator of transcription 3    anti-tumor    inhibitor    DNA binding domain    N-terminal domain   
收稿日期: 2018-06-14
DOI: 10.16438/j.0513-4870.2018-0559
基金项目: 国家自然科学基金资助项目(81503091,21572010,21772005);协和青年科研基金与中央高校基本科研业务费专项基金资助项目(2017350002).
通讯作者: 刘振明,Tel:13311134423,E-mail:zmliu@bjmu.edu.cn
Email: zmliu@bjmu.edu.cn
相关功能
PDF(432KB) Free
打印本文
0
作者相关文章
邹杨  在本刊中的所有文章
刘园  在本刊中的所有文章
黄薇  在本刊中的所有文章
崔景荣  在本刊中的所有文章
金宏威  在本刊中的所有文章
张亮仁  在本刊中的所有文章
刘振明  在本刊中的所有文章

参考文献:
[1] Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality[J]. Proc Natl Acad Sci U S A, 1997, 94:3801-3804.
[2] Zhong Z, Wen Z, Darnell JE Jr. Stat3 and Stat4:members of the family of signal transducers and activators of transcription[J]. Proc Natl Acad Sci U S A, 1994, 91:4806-4810.
[3] Xiong A, Yang Z, Shen Y, et al. Transcription factor STAT3 as a novel molecular target for cancer prevention[J]. Cancers, 2014, 6:926-957.
[4] Paukku K, Silvennoinen O. STATS as critical mediators of signal transduction and transcription:lessons learned from STAT5[J]. Cytokine Growth Factor Rev, 2004, 15:435-455.
[5] Hevehan DL, Miller WM, Papoutsakis ET. Differential expression and phosphorylation of distinct STAT3 proteins during granulocytic differentiation[J]. Blood, 2002, 99:1627-1637.
[6] Benekli M, Baer MR, Baumann H, et al. Signal transducer and activator of transcription proteins in leukemias[J]. Blood, 2003, 101:2940-2954.
[7] Dumoutier L, de Meester C, Tavernier J, et al. New activation modus of STAT3:a tyrosine-less region of the interleukin-22 receptor recruits STAT3 by interacting with its coiled-coil domain[J]. J Biol Chem, 2009, 284:26377-26384.
[8] Wen Z, Zhong Z, Darnell JE Jr. Maximal activation of transcription by STAT1 and STAT3 requires both tyrosine and serine phosphorylation[J]. Cell, 1995, 82:241-250.
[9] Ren Z, Mao X, Mertens C, et al. Crystal structure of unphosphorylated STAT3 core fragment[C]. Biochem Biophys Res Commun, 2008, 374:1-5.
[10] Becker S, Groner B, Muller CW. Three-dimensional structure of the Stat3beta homodimer bound to DNA[J]. Nature, 1998, 394:145-151.
[11] Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl[J]. J Exp Med, 1996, 183:811-820.
[12] Ilaria RL Jr, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members[J]. J Biol Chem, 1996, 271:31704-31710.
[13] Frank DA, Varticovski L. BCR/abl leads to the constitutive activation of STAT proteins, and shares an epitope with tyrosine phosphorylated Stats[J]. Leukemia, 1996, 10:1724-1730.
[14] Nieborowska-Skorska M, Wasik MA, Slupianek A, et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis[J]. J Exp Med, 1999, 189:1229-1242.
[15] Ihle JN. The Janus protein tyrosine kinases in hematopoietic cytokine signaling[J]. Semin Immunol, 1995, 7:247-254.
[16] Yu H, Pardoll D, Jove R. STATS in cancer inflammation and immunity:a leading role for STAT3[J]. Nat Rev Cancer, 2009, 9:798-809.
[17] Wang Y, Ning H, Ren F, et al. Gdx/UBL4A specifically stabilizes the TC45/STAT3 association and promotes dephosphorylation of STAT3 to repress tumorigenesis[J]. Mol Cell, 2014, 53:752-765.
[18] Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science, 1994, 264:1415-1421.
[19] Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands:the JAK-STAT pathway[J]. Annu Rev Biochem, 1995, 64:621-651.
[20] Danial NN, Pernis A, Rothman PB. Jak-STAT signaling induced by the v-abl oncogene[J]. Science, 1995, 269:1875-1877.
[21] Jove R, Kornbluth S, Hanafusa H. Enzymatically inactive p60c-src mutant with altered ATP-binding site is fully phosphorylated in its carboxy-terminal regulatory region[J]. Cell, 1987, 50:937-943.
[22] Ren F, Geng Y, Minami T, et al. Nuclear termination of STAT3 signaling through SIPAR (STAT3-interacting protein as a repressor)-dependent recruitment of T cell tyrosine phosphatase TC-PTP[J]. FEBS Lett, 2015, 589:1890-1896.
[23] Yamamoto T, Sekine Y, Kashima K, et al. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation[J]. Biochem Biophys Res Commun, 2002, 297:811-817.
[24] Huang M, Page C, Reynolds RK, et al. Constitutive activation of STAT3 oncogene product in human ovarian carcinoma cells[J]. Gynecol Oncol, 2000, 79:67-73.
[25] Sun Y, Yang S, Sun N, et al. Differential expression of STAT1 and p21 proteins predicts pancreatic cancer progression and prognosis[J]. Pancreas, 2014, 43:619-623.
[26] Liao Z, Nevalainen MT. Targeting transcription factor STAT5a/b as a therapeutic strategy for prostate cancer[J]. Am J Transl Res, 2011, 3:133-138.
[27] Cohen-Kaplan V, Jrbashyan J, Yanir Y, et al. Heparanase induces signal transducer and activator of transcription (STAT) protein phosphorylation:preclinical and clinical significance in head and neck cancer[J]. J Biol Chem, 2012, 287:6668-6678.
[28] Barash I. STAT5 in breast cancer:potential oncogenic activity coincides with positive prognosis for the disease[J]. Carcinogenesis, 2012, 33:2320-2325.
[29] Sanchez-Ceja SG, Reyes-Maldonado E, Vazquez-Manriquez ME, et al. Differential expression of STAT5 and Bcl-xL, and high expression of Neu and STAT3 in non-small-cell lung carcinoma[J]. Lung Cancer, 2006, 54:163-168.
[30] Casetti L, Martin-Lanneree S, Najjar I, et al. Differential contributions of STAT5A and STATB to stress protection and tyrosine kinase inhibitor resistance of chronic myeloid leukemia stem/progenitor cells[J]. Cancer Res, 2013, 73:2052-2058.
[31] Germain D, Frank DA. Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy[J]. Clin Cancer Res, 2007, 3:5665-5669.
[32] Wang Y, Shen Y, Wang S, et al. The role of STAT3 in leading the crosstalk between human cancers and the immune system[J]. Cancer Lett, 2018, 415:117-128.
[33] Li SQ, Cheuk AT, Shern JF, et al. Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib (AP24534)[J]. PLoS One. 2013, 8:e76551. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076551.
[34] Ferrajoli A, Faderl S, Van Q, et al. WP1066 disrupts Janus kinase-2 and induces caspase-dependent apoptosis in acute myelogenous leukemia cells[J]. Cancer Res, 2007, 67:11291-11299.
[35] Iwamaru A, Szymanski S, Iwado E, et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo[J]. Oncogene, 2007, 26:2435-2444.
[36] Oyaizu T, Fung SY, Shiozaki A, et al. Src tyrosine kinase inhibition prevents pulmonary ischemia-reperfusion-induced acute lung injury[J]. Intensive Care Med, 2012, 38:894-905.
[37] Gangadhar TC, Clark JI, Karrison T, et al. Phase Ⅱ study of the Src kinase inhibitor saracatinib (AZD0530) in metastatic melanoma[J]. Invest New Drugs, 2013, 31:769-773.
[38] Antonarakis ES, Heath EI, Posadas EM, et al. A phase 2 study of KX2-391, an oral inhibitor of Src kinase and tubulin polymerization, in men with bone-metastatic castration-resistant prostate cancer[J]. Cancer Chemother Pharmacol, 2013, 71:883-892.
[39] Sun X, Li B, Xie B, et al. DCZ3301, a novel cytotoxic agent, inhibits proliferation in diffuse large B-cell lymphoma via the STAT3 pathway[J]. Cell Death Dis, 2017, 8:e3111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680593.
[40] Kraskouskaya D, Duodu E, Arpin CC, et al. Progress towards the development of SH2 domain inhibitors[J]. Chem Soc Rev, 2013, 21:3337-3370.
[41] Turkson J, Ryan D, Kim JS, et al. Phosphotyrosyl peptides block STAT3-mediated DNA binding activity, gene regulation, and cell transformation[J]. J Biol Chem, 2001, 276:45443-45455.
[42] Turkson J, Kim JS, Zhang S, et al. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity[J]. Mol Cancer Ther, 2004, 3:261-269.
[43] Ren Z, Cabell LA, Schaefer TS, et al. Identification of a high-affinity phosphopeptide inhibitor of STAT3[J]. Bioorg Med Chem Lett, 2003, 13:633-636.
[44] Dourlat J, Valentin B, Liu WQ, et al. New syntheses of tetrazolylmethylphenylalanine and O-malonyltyrosine as pTyr mimetics for the design of STAT3 dimerization inhibitors[J]. Bioorg Med Chem Lett, 2007, 17:3943-3946.
[45] Chen J, Nikolovska-Coleska Z, Yang CY, et al. Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor of STAT3via ‘click chemistry’[J]. Bioorg Med Chem Lett, 2007, 17:3939-3942.
[46] Mandal PK, Limbrick D, Coleman DR, et al. Conformationally constrained peptidomimetic inhibitors of signal transducer and activator of transcription. 3:Evaluation and molecular modeling[J]. J Med Chem, 2009, 52:2429-2442.
[47] Mandal PK, Heard PA, Ren Z, et al. Solid-phase synthesis of STAT3 inhibitors incorporating O-carbamoylserine and O-carbamoylthreonine as glutamine mimics[J]. Bioorg Med Chem Lett, 2007, 17:654-656.
[48] Song H, Wang R, Wang S, et al. A low-molecular-weight compound discovered through virtual database screening inhibits STAT3 function in breast cancer cells[J]. Proc Natl Acad Sci U S A, 2005, 102:4700-4705.
[49] Wei CC, Ball S, Lin L, et al. Two small molecule compounds, LLL12 and FLLL32, exhibit potent inhibitory activity on STAT3 in human rhabdomyosarcoma cells[J]. Int J Oncol, 2010, 38:279-285.
[50] Fuh B, Sobo M, Cen L, et al. LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model[J]. Br J Cancer, 2009, 100:106-112.
[51] Schust J, Sperl B, Hollis A, et al. Stattic:a small-molecule inhibitor of STAT3 activation and dimerization[J]. Chem Biol, 2006, 13:1235-1242.
[52] Zhang Q, Zhang C, He J, et al. STAT3 inhibitor static enhances radiosensitivity in esophageal squamous cell carcinoma[J]. Tumor Biol, 2015, 36:2135-2142.
[53] Kim MJ, Nam HJ, Kim HP, et al. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells[J]. Cancer Lett, 2013, 335:145-152.
[54] Brambilla L, Genini D, Laurini E, et al. Hitting the right spot:mechanism of action of OPB-31121, a novel and potent inhibitor of the signal transducer and activator of transcription 3(STAT3)[J]. Mol Oncol, 2015, 9:1194-1206.
[55] Oh DY, Lee SH, Han SW, et al. Phase I study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors[J]. Cancer Res Treat, 2015, 47:607-615.
[56] Ji P, Yuan C, Ma S, et al. 4-Carbonyl-2,6-dibenzylidenecyclohexanone derivatives as small molecule inhibitors of STAT3 signaling pathway[J]. Bioorg Med Chem, 2016, 24:6174-6182.
[57] Bid HK, Oswald D, Li C, et al. Anti-angiogenic activity of a small molecule STAT3 inhibitor LLL12[J]. PLoS One, 2012, 7:e35513. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035513.
[58] Siddiquee K, Zhang S, Guida WC, et al. Selective chemical probe inhibitor of STAT3, identified through structure-based virtual screening, induces antitumor activity[J]. Proc Natl Acad Sci U S A, 2007, 104:7391-7396.
[59] Guo W, Wu S, Wang L, et al. Antitumor activity of a novel oncrasin analogue is mediated by JNK activation and STAT3 inhibition[J]. PLoS One, 2011, 6:e28487. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028487.
[60] Hou S, Yi YW, Kang HJ, et al. Novel carbazole inhibits phospho-STAT3 through induction of protein-tyrosine phosphatase PTPN6[J]. J Med Chem, 2014, 57:6342-6353.
[61] Lin L, Hutzen B, Ball S, et al. New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells[J]. Cancer Sci, 2009, 100:1719-1727.
[62] Cen L, Hutzen B, Ball S, et al. New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells[J]. BMC Cancer, 2009, 9:99.
[63] Mehmood T, Maryam A, Tian X, et al. Santamarine inhibits NF-κB activation and induces mitochondrial apoptosis in A549 lung adenocarcinoma cells via oxidative stress[J]. J Cancer, 2017, 8:3707-3717.
[64] Kim LH, Khadka S, Shin JA, et al. Nitidine chloride acts as an apoptosis inducer in human oral cancer cells and a nude mouse xenograft model via inhibition of STAT3[J]. Oncotarget, 2017, 8:91306-91315.
[65] Vannini N, Lorusso G, Cammarota R, et al. The synthetic oleanane triterpenoid, CDDO-methyl ester, is a potent antiangiogenic agent[J]. Mol Cancer Ther, 2007, 6:3139-3146.
[66] Liby KT, Royce DB, Risingsong R, et al. Synthetic triterpenoids prolong survival in a transgenic mouse model of pancreatic cancer[J]. Cancer Prev Res (Phila), 2010, 3:1427-1434.
[67] Ling X, Konopleva M, Zeng Z, et al. The novel triterpenoid C-28 methyl ester of 2-cyano-3,12-dioxoolen-1,9-dien-28-oic acid inhibits metastatic murine breast tumor growth through inactivation of STAT3 signaling[J]. Cancer Res, 2007, 67:4210-4218.
[68] Duan Z, Ames RY, Ryan M, et al. CDDO-Me, a synthetic triterpenoid, inhibits expression of IL-6 and STAT3 phosphorylation in multi-drug resistant ovarian cancer cells[J]. Cancer Chemother Pharmacol, 2009, 63:681-689.
[69] Yang J, Liao X, Agarwal MK, et al. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB[J]. Genes Dev, 2007, 21:1396-1408.
[70] Nkansah E, Shah R, Collie GW, et al. Observation of unphosphorylated STAT3 core protein binding to target dsDNA by PEMSA and X-ray crystallography[J]. FEBS Lett, 2013, 587:833-839.
[71] Timofeeva OA, Chasovskikh S, Lonskaya I, et al. Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA[J]. J Biol Chem, 2012, 287:14192-14200.
[72] Huang W, Dong Z, Wang F, et al. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion[J]. ACS Chem Biol, 2014, 9:1188-1196.
[73] Yang E, Henriksen MA, Schaefer O, et al. Dissociation time from DNA determines transcriptional function in a STAT1 linker mutant[J]. Biol Chem, 2002, 277:13455-13462.
[74] Buettner R, Corzano R, Rashid R, et al. Alkylation of cysteine 468 in STAT3 defines a novel site for therapeutic development[J]. ACS Chem Biol, 2011, 6:432-443.
[75] Huang W, Dong Z, Chen Y, et al. Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo[J]. Oncogene, 2015, 35:783-792.
[76] Son DJ, Zheng J, Jung YY, et al. MMPP attenuates non-small cell lung cancer growth by inhibiting the STAT3 DNA-binding activity via direct binding to the STAT3 DNA-binding domain[J]. Theranostics, 2017, 7:4632-4642.
[77] Timofeeva OA, Gaponenko V, Lockett SJ, et al. Rationally designed inhibitors identify STAT3 N-domain as a promising anticancer drug target[J]. ACS Chem Biol, 2007, 2:799-809.
[78] Timofeeva OA, Tarasova NI, Zhang X, et al. STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain[J]. Proc Natl Acad Sci U S A, 2013, 110:1267-1272.
[79] Levy DE, Darnell JE Jr. STATS:transcriptional control and biological impact[J]. Nat Rev Mol Cell Biol, 2002, 3:651-662.
[80] Huang M, Song K, Liu X. AlloFinder:a strategy for allosteric modulator discovery and allosterome analyses[J]. Nucleic Acids Res, 46:W451-W458.
相关文献:
1.季鸣, 姚海平, 周洁, 金晶, 王丽嫄, 来芳芳, 薛妮娜, 徐柏玲, 陈晓光.新型PARP1/2抑制剂YHP-743的抗肿瘤作用[J]. 药学学报, 2018,53(6): 938-943
2.姜玉环, 张晶, 陈云雨, 王艳宏, 司书毅.以PLK1 PBD为靶点小分子抑制剂的筛选及抗肿瘤活性研究[J]. 药学学报, 2017,52(3): 409-415
3.李慧, 韩潇, 李德武.左氧氟沙星与噻二唑类组蛋白去乙酰化酶抑制剂缀合物的合成和抗肿瘤活性[J]. 药学学报, 2017,52(4): 582-591
4.黎晓龙, 邱瑞, 李珏, 海俐, 吴勇.小分子抗肿瘤FGFR抑制剂与FGFR蛋白的作用关系研究及研发进展[J]. 药学学报, 2016,51(11): 1689-1697
5.李家庆, 韩潇.二氢吡啶酮类组蛋白去乙酰化酶抑制剂的设计、合成及抗肿瘤活性[J]. 药学学报, 2016,51(11): 1734-1744
6.邹翩, 裴江鸿, 石卫, 陈莉.基于GSTπ的抗肿瘤药物研究进展[J]. 药学学报, 2016,51(2): 241-247
7.裴婷, 刘芳, 邓艾平.环丙沙星与组蛋白去乙酰化酶抑制剂缀合物的合成及抗肿瘤活性[J]. 药学学报, 2016,51(12): 1871-1880
8.孟艳秋, 刘立伟, 刘冬莹, 宋艳玲.Survivin抑制剂研究进展[J]. 药学学报, 2016,51(3): 347-355
9.牛非, 李燕, 来芳芳, 陈晓光.低氧诱导因子1抑制剂的抗肿瘤研究进展[J]. 药学学报, 2014,49(6): 832-836
10.来芳芳, 刘晓宇, 牛非, 郎立伟, 谢平, 陈晓光.新型HIF-1抑制剂三白脂素-8衍生物LXY6099的抗肿瘤作用[J]. 药学学报, 2014,49(5): 622-626
11.董丹丹, 肖燕燕, 刘 伟, 周红刚, 杨 诚.Aurora-B激酶及其抑制剂研究进展[J]. 药学学报, 2013,48(4): 457-465
12.何裕军, 刘瑞环, 宁澄清, 余聂芳.多腺苷二磷酸核糖聚合酶抑制剂抗肿瘤的研究进展[J]. 药学学报, 2013,48(5): 655-660
13.阮秀琴, 陈 明, 吴梧桐, 尤启冬.四氢咔啉类纺锤体驱动蛋白抑制剂的合成和抗肿瘤活性研究[J]. 药学学报, 2013,48(7): 1119-1123
14.李良, 刘红, 张胜华, 胡磊, 甄永苏.肉桂酰胺格尔德霉素的体内外抗肿瘤活性[J]. 药学学报, 2013,48(12): 1771-1777
15.周洁, 朱枝祥, 陈晓光, 徐柏玲.氮杂吲哚类PARP-1抑制剂的合成及活性评价[J]. 药学学报, 2013,48(12): 1792-1799
16.郭佳, 李凤然, 刘洋, 程卯生.碳酸酐酶IX小分子抑制剂的研究进展[J]. 药学学报, 2013,48(11): 1637-1643
17.尚 海 潘 莉 杨 澍 陈 虹 程卯生.微管蛋白抑制剂的研究进展[J]. 药学学报, 2010,45(9): 1078-1088
18.李景 张大永 吴晓明.泛素-蛋白酶体及其抑制剂的分类与合成[J]. 药学学报, 2009,44(12): 1313-1319
19.吴文, 卢骋, 陈思宇, 余聂芳.已上市和部分正在Ⅲ期临床开发中的多靶点激酶抑制剂抑酶谱及信号传导通路分析[J]. 药学学报, 2009,44(3): 242-257
20.曹 鑫 尤启冬 李志裕 郭青龙 杨 勇 尚 靖 严 明 陈基旺 陈梦伶.具有Src激酶和NO合酶双重抑制作用的4-芳杂胺-3-氰基喹啉类抗肿瘤化合物的设计、合成与生物活性研究[J]. 药学学报, 2009,44(3): 288-295
21.阮秀琴;尤启冬;杨蕾;吴梧桐.β-四氢咔啉衍生物的合成和生物活性[J]. 药学学报, 2008,43(8): 828-832
22.茆勇军;李海泓;李剑峰;沈敬山.蛋白酪氨酸激酶信号转导途径与抗肿瘤药物[J]. 药学学报, 2008,43(4): 323-334
23.张胜华;粟俭;甄永苏;.丹酚酸A抑制核苷转运并增强化疗药物的抗肿瘤作用丹酚酸A抑制核苷转运并增强化疗药物的抗肿瘤作用[J]. 药学学报, 2004,39(7): 496-499
24.王瑞虹;张鸿卿;方敏;薛绍白.蛋白激酶抑制剂staurosporine增强抗癌药对肿瘤细胞的杀伤[J]. 药学学报, 1996,31(6): 411-415