药学学报, 2018, 53(10): 1609-1619
引用本文:
宋玮, 郑伟, 张洁, 张涛, 刘曙晨, 余利岩, 马百平. 中药皂苷类成分的体内代谢研究进展[J]. 药学学报, 2018, 53(10): 1609-1619.
SONG Wei, ZHENGWei, ZHANG Jie, ZHANG Tao, LIU Shu-chen, YU Li-yan, MA Bai-ping. Metabolism of saponins from traditional Chinese medicines: a review[J]. Acta Pharmaceutica Sinica, 2018, 53(10): 1609-1619.

中药皂苷类成分的体内代谢研究进展
宋玮1, 郑伟2, 张洁2, 张涛3, 刘曙晨2, 余利岩3, 马百平2
1. 中国医学科学院、北京协和医学院北京协和医院, 协和转化医学中心, 北京 100730;
2. 军事医学研究院辐射医学研究所, 北京 100850;
3. 中国医学科学院、北京协和医学院医药生物技术研究所, 北京 100050
摘要:
皂苷是中药中的一类重要活性成分,根据苷元结构的不同又可分为三萜皂苷和甾体皂苷两种结构类型。本文对多种代表性中药皂苷如人参皂苷、甘草皂苷、柴胡皂苷、知母皂苷和薯蓣皂苷等的体内代谢途径进行了综述,并对其代谢规律进行了总结。皂苷原形成分口服给药后往往吸收较差,其体内代谢通常经由胃肠道的水解和吸收入血后肝脏的代谢两步完成。其中,胃肠道水解后产生的次级苷或苷元往往具有更高的生物利用度,而肝脏对入血成分的进一步代谢则以Ⅰ相代谢为主。明确中药皂苷的体内代谢特征,有助于正确理解该类成分发挥药效的体内物质基础,并为基于活性天然产物的新药开发提供科学依据。
关键词:    中药      三萜皂苷      甾体皂苷      体内代谢      肠道菌群      Ⅰ相代谢     
Metabolism of saponins from traditional Chinese medicines: a review
SONG Wei1, ZHENGWei2, ZHANG Jie2, ZHANG Tao3, LIU Shu-chen2, YU Li-yan3, MA Bai-ping2
1. Center for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
2. Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China;
3. Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Saponins are important components in traditional Chinese medicine (TCM) with significant biological activities, which could be divided into triterpenoid saponins and steroidal saponins according to structures of the aglycone skeletons. This article reviews the in vivo metabolic pathways of some typical natural saponins such as ginsenosides, licorice saponins, saikosaponins, timosaponins and diosgenin glycosides. Saponins often show poor absorbance after oral administration. The in vivo metabolism of saponins generally contain two steps. These compounds usually undergo hydrolysis in stomach and gut. Then they are absorbed into blood and metabolized in liver. The secondary glycosides and the aglycones produced in gastrointestinal tract often show higher bioavailability and better bioactivity, while downstream metabolites in liver are mainly produced by phase I metabolism. Clarification of the in vivo metabolism of bioactive saponins is helpful for the understanding of the effective ingredients in TCM, as well as the discovery of new drugs from natural products.
Key words:    traditional Chinese medicine    triterpenoid saponins    steroidal saponins    in vivo metabolism    gut bacteria    phase I metabolism   
收稿日期: 2018-05-19
DOI: 10.16438/j.0513-4870.2018-0470
基金项目: 国家“重大新药创制”科技重大专项基金资助项目(2017ZX09301072).
通讯作者: 马百平,Tel:86-10-66930265,E-mail:mabaiping@sina.com
Email: mabaiping@sina.com
相关功能
PDF(525KB) Free
打印本文
0
作者相关文章
宋玮  在本刊中的所有文章
郑伟  在本刊中的所有文章
张洁  在本刊中的所有文章
张涛  在本刊中的所有文章
刘曙晨  在本刊中的所有文章
余利岩  在本刊中的所有文章
马百平  在本刊中的所有文章

参考文献:
[1] Singh D, Chaudhuri PK. Structural characteristics, bioavailability and cardioprotective potential of saponins[J]. Int Med Res, 2018, 7:33-43.
[2] Vincken JP, Heng L, De GA, et al. Saponins, classification and occurrence in the plant kingdom[J]. Phytochemistry, 2007, 38:275-297.
[3] Rao AV, Gurfinkel DM. The bioactivity of saponins:triterpenoid and steroidal glycosides[J]. Drug Metab Drug Interact, 2000, 17:211-235.
[4] Liu H, Yang J, Du F, et al. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats[J]. Drug Metab Dispos, 2009, 37:2290-2298.
[5] Akao T, Akao T, Kobashi K. Glycyrrhizin beta-D-glucuronidase of Eubacterium sp. from human intestinal flora[J]. Chem Pharm Bull, 1987, 35:705-710.
[6] Akao T, Hayashi T, Kobashi K, et al. Intestinal bacterial hydrolysis is indispensable to absorption of 18β-glycyrrhetic acid after oral administration of glycyrrhizin in rats[J]. J Pharm Pharmacol, 1994, 46:135-137.
[7] Hierro JND, Herrera T, Fornari T, et al. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities[J]. J Funct Foods, 2018, 40:484-497.
[8] Kang S, Min H. Ginseng, the ‘immunity boost’:the effects of Panax ginseng on immune system[J]. J Ginseng Res, 2012, 36:354-368.
[9] Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action[J]. Acta Pharmacol Sin, 2005, 26:143-149.
[10] Wang Y, Pan JY, Xiao XY, et al. Simultaneous determination of ginsenosides in Panax ginseng with different growth ages using high-performance liquid chromatography-mass spectrometry[J]. Phytochem Anal, 2006, 17:424-430.
[11] Li X, Wang G, Sun J, et al. Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent traditional Chinese medicine (TCM) in rats[J]. Biol Pharm Bull, 2007, 30:847-851.
[12] Akao T, Kida H, Kanaoka M, et al. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng[J]. J Pharm Pharmacol, 1998, 50:1155-1160.
[13] Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria[J]. Biol Pharm Bull, 2000, 23:1481-1485.
[14] Chi H, Ji GE. Transformation of ginsenosides Rb1 and Re from Panax ginseng, by food microorganisms[J]. Biotechnol Lett, 2005, 27:765-771.
[15] Bae EA, Choo MK, Park EK, et al. Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity[J]. Biol Pharm Bull, 2002, 25:743-747.
[16] Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins[J]. Planta Med, 1997, 63:436-440.
[17] Bae EA, Han MJ, Kim EJ, et al. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants[J]. Arch Pharm Res, 2004, 27:61-67.
[18] Bae EA, Shin JE, Kim DH. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect[J]. Biol Pharm Bull, 2005, 28:1903-1908.
[19] Zhu H, Shen H, Xu J, et al. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach[J]. Drug Testing Anal, 2015, 7:320-330.
[20] Hu Z, Yang J, Cheng C, et al. Combinatorial metabolism notably affects human systemic exposure to ginsenosides from orally administered extract of Panax notoginseng roots (Sanqi)[J]. Drug Metab Dispos, 2013, 41:1457-1469.
[21] Yang L, Xu S, Liu C, et al. In vivo metabolism study of ginsenoside Re in rat using high-performance liquid chromatography coupled with tandem mass spectrometry[J]. Anal Bioanal Chem, 2009, 395:1441-1451.
[22] Hao H, Lai LC, Wang Q, et al. Microsomal cytochrome P450-mediated metabolism of protopanaxatriol ginsenosides:metabolite profile, reaction phenotyping, and structure-metabolism relationship[J]. Drug Metab Dispos, 2010, 38:1731-1739.
[23] Song W, Qiao X, Chen K, et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids[J]. Anal Chem, 2017, 89:3146-3153.
[24] Zhang QY, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice)[J]. J Chromatogr A, 2009, 1216:1954-1969.
[25] Xiang C, Qiao X, Wang Q, et al. From single compounds to herbal extract:a strategy to systematically characterize the metabolites of licorice in rats[J]. Drug Metab Dispos, 2011, 39:1597-1608.
[26] Gao K, Yu W, Yang J, et al. CYP3A1/2 and 2C9/10 in rat liver microsomes mediate 22α-and 24-hydroxylation of 18α-glycyrrhetic acid[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2007, 12:1255-1260.
[27] Ishida S, Sakiya Y, Ichikawa T, et al. Dose-dependent pharmacokinetics of glycyrrhizin in rats[J]. Chem Pharm Bull, 1992, 40:1917-1920.
[28] Qiao X, Ye M, Xiang C, et al. Analytical strategy to reveal the in vivo process of multi-component herbal medicine:a pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry[J]. J Chromatogr A, 2012, 1258:84-93.
[29] Hattori M, Sakamoto T, Kobashi K, et al. Metabolism of glycyrrhizin by human intestinal flora[J]. Planta Med, 1983, 48:38-42.
[30] Akao T. Localization of enzymes involved in metabolism of glycyrrhizin in contents of rat gastrointestinal tract[J]. Biol Pharm Bull, 1997, 20:122-126.
[31] Akao T. Influence of various bile acids on the metabolism of glycyrrhizin and glycyrrhetic acid by Ruminococcus sp. PO1-3 of human intestinal bacteria[J]. Biol Pharm Bull, 1999, 22:787-793.
[32] Kim DH, Lee SW, Han MJ. Biotransformation of glycyrrhizin to 18 beta-glycyrrhetinic acid-3-O-beta-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium[J]. Biol Pharm Bull, 1999, 22:320-322.
[33] Akao T. Effects of glycyrrhizin and glycyrrhetic acid on the growth, glycyrrhizin beta-D-glucuronidase and 3 beta-hydroxysteroid dehydrogenase of human intestinal bacteria[J]. Biol Pharm Bull, 2000, 23:104-107.
[34] Wang Q, Qian Y, Wang Q, et al. Metabolites identification of bioactive licorice compounds in rats[J]. J Pharmaceut Biomed Anal, 2015, 115:515-522.
[35] Huang WW, Wang MY, Shi HM, et al. Comparative study of bioactive constituents in crude and processed Glycyrrhizae radix, and their respective metabolic profiles in gastrointestinal tract in vitro, by HPLC-DAD and HPLC-ESI/MS analyses[J]. Arch Pharm Res, 2012, 35:1945-1952.
[36] Tao Y, Su D, Li W, et al. Pharmacokinetic comparisons of six components from raw and vinegar-processed Daphne genkwa aqueous extracts following oral administration in rats by employing UHPLC-MS/MS approaches[J]. J Chromatogr B, 2018, 1079:34-40.
[37] Shimizu K, Amagaya S, Ogihara Y. Structural transformation of saikosaponins by gastric juice and intestinal flora[J]. J pharmacobio-dynamics, 1985, 8:718-725.
[38] Kida H, Akao T, Meselhy R, et al. Metabolism and pharmacokinetics of orally administered saikosaponin b1 in conventional, germfree and Eubacterium sp. A-44-infected gnotobiote rats[J]. Biol Pharm Bull, 1998, 21:588-593.
[39] Yu KU, Jang IS, Kang KH, et al. Metabolism of saikosaponin c and naringin by human intestinal bacteria[J]. Arch Pharm Res, 1997, 20:420-424.
[40] Liu GQ, Tian Y, Li G et al. Metabolism of saikosaponin a in rats:diverse oxidations on the aglycone moiety in liver and intestine in addition to hydrolysis of glycosidic bonds[J]. Drug Metab Dispos, 2013, 41:622-633.
[41] Yu P, Qiu H, Wang M, et al. In vitro metabolism study of saikosaponin d and its derivatives in rat liver microsomes[J]. Xenobiotica, 2016, 47:11-19.
[42] Qin J, Kang Y, Xu Z, et al. Dioscin prevents the mitochondrial apoptosis and attenuates oxidative stress in cardiac H9c2 cells[J]. Drug Res, 2014, 64:47-52.
[43] Wang Z, Yue C, Wang N, et al. Dioscin induces cancer cell apoptosis through elevated oxidative stress mediated by downregulation of peroxiredoxins[J]. Cancer Biol Ther, 2012, 13:138-147.
[44] Ke L, Tang Y, Fawcett JP, et al. Characterization of the pharmacokinetics of dioscin in rat[J]. Steroids, 2005, 70:525-530.
[45] Dong M. Studies on the Metabolism of and the Signal Transduction Pathways of Apoptosis Induced by the Constituents of Dioscorea Pahthaica Prain (黄山药化学成分代谢及其诱导细胞凋亡的分子机制的研究)[D]. Shenyang:Shenyang Pharmaceutical University, 2001.
[46] Zhu H, Xu J, Mao Q, et al. Metabolic profiles of dioscin in rats revealed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Biomed Chromatogr, 2015, 29:1415-1421.
[47] Tang YN, Pang YX, Cheng X, et al. UPLC-QTOF-MS identification of metabolites in rat biosamples after oral administration of Dioscorea saponins:a comparative study[J]. J Ethnopharmacol, 2015, 165:127-140.
[48] Guo CR, Li L, Yang XL et al. Protective effects of timosaponin B-Ⅱ on high glucose-induced apoptosis in human umbilical vein endothelial cells, Environ[J]. Toxicol Pharmacol, 2014, 37:37-44.
[49] Kang YJ, Chung HJ, Nam JW, et al. Cytotoxic and antineoplastic activity of timosaponin A-Ⅲ for human colon cancer cells[J]. J Nat Prod, 2011, 74:701-706.
[50] Yu S, Liu L, Ying P, et al. Metabolites characterization of timosaponin AⅢ in vivo, and in vitro, by using liquid chromatography-mass spectrometry[J]. J Chromatogr B, 2015, 997:236-243.
[51] Jia Y, Fu Z, Li Z, et al. In vivo and in vitro metabolism study of timosaponin B-Ⅱ using HPLC-ESI-MSn[J]. Chromatographia, 2015, 78:1175-1184.
[52] Qin ZF, Dai Y, Yao ZH, et al. Study on chemical profiles and metabolites of Allii Macrostemonis Bulbus, as well as its representative steroidal saponins in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry[J]. Food Chem, 2016, 192:499-515.
[53] Yu K, Chen F, Li C. Absorption, disposition, and pharmacokinetics of saponins from Chinese medicinal herbs:what do we know and what do we need to know more?[J]. Curr Drug Metab, 2012, 13:577-598.
[54] Xu J, Chen HB, Li SL. Understanding the molecular mechnisms of the interplay between herbal medicine and gut microbiota[J]. Med Res Rev, 2017, 37:1140-1185.
[55] Wang Y, Liu T, Wang W et al. Studies on the metabolism of ginsenoside Rg1 by intestinal bacteria and its absorbed metabolites in rat and human sera[J]. Acta Pharm Sin (药学学报), 2000, 35:284-288.
[56] Chi H, Kim DH, Ji GE. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms[J]. Biol Pharm Bull, 2005, 28:2102-2105.
[57] Sung JH, Huh JD, Hasegawa H, et al. Process for the preparation of ginseng saponins:US, 5925537[P]. 1999-7-20.
[58] Zhao Y, Jiang T, Han B, et al. Preparation of some metabolites of timosaponin BⅡ by biotransformation in vitro[J]. Proc Biochem, 2015, 50:2182-2187.