药学学报, 2018, 53(10): 1630-1636
引用本文:
陈敏, 吴梅岭, 范颖, 伍雯. 一氧化氮负载的纳米材料作为化疗药物载体逆转肿瘤多药耐药性的研究进展[J]. 药学学报, 2018, 53(10): 1630-1636.
CHEN Min, WU Mei-ling, FAN Ying, WU Wen. Nitric oxide-releasing drug delivery systems for overcoming drug resistance in chemotherapy[J]. Acta Pharmaceutica Sinica, 2018, 53(10): 1630-1636.

一氧化氮负载的纳米材料作为化疗药物载体逆转肿瘤多药耐药性的研究进展
陈敏, 吴梅岭, 范颖, 伍雯
重庆大学药学院, 重庆市天然产物全合成与创新药物研究重点实验室, 重庆 401331
摘要:
化学治疗药物与放射治疗等治疗方法对攻克癌症做出了重大贡献,可肿瘤细胞的多药耐药(multidrug resistance,MDR)仍是实现高效化疗的主要障碍。近期的研究表明一氧化氮(nitric oxide,NO)可以克服MDR,不同于其他具有潜在毒性的化疗增敏剂,NO是内源性分子,具有良好的生物相容性。这一特性使其有望成为高效低毒的肿瘤治疗策略。负载NO的纳米载药系统不仅有利于多种治疗药物的递送,而且有助于增加肿瘤细胞对药物的敏感性,克服MDR。因此,本文将综述利用负载NO的纳米材料输送抗癌药物以逆转肿瘤耐药性的研究进展及相关机制。
关键词:    肿瘤多药耐药性      一氧化氮供体      纳米粒      化疗增敏      药物输送     
Nitric oxide-releasing drug delivery systems for overcoming drug resistance in chemotherapy
CHEN Min, WU Mei-ling, FAN Ying, WU Wen
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
Abstract:
Chemotherapeutic agents along with other treatments, such as chemotherapy and radiotherapy, have made significant contributions to cancer therapy, however multidrug resistance (MDR) in tumor remains an important developmental barrier to efficient chemotherapy. In recent research, there is increasing evidence that nitric oxide (NO) has the potential to overcome MDR. Unlike other chemosensitizers that ameliorate MDR but are potentially toxic, NO is endogenous and biocompatible molecule, which makes it even more promising as a cancer therapeutic. Nanoparticle-based drug delivery systems not only facilitate the delivery of multiple therapeutic agents, but also promote the avoidance of MDR, which are promising to both efficient delivery of NO and anti-cancer drugs in combination. Therefore, this review will discuss the mechanisms how NO reverse MDR and the recent advances in the application of NO functionalized nanoparticles for anticancer drug delivery.
Key words:    tumor multidrug resistance    nitric oxide donor    nanoparticle    chemosensitization    drug delivery    
收稿日期: 2018-06-19
DOI: 10.16438/j.0513-4870.2018-0460
基金项目: 国家自然科学基金资助项目(81741169);中央高校基本科研业务资助项目(0903005203498,2018CDYXYX0027).
通讯作者: 伍雯,Tel:86-23-65678471,E-mail:wuwen1988@cqu.edu.cn
Email: wuwen1988@cqu.edu.cn
相关功能
PDF(258KB) Free
打印本文
0
作者相关文章
陈敏  在本刊中的所有文章
吴梅岭  在本刊中的所有文章
范颖  在本刊中的所有文章
伍雯  在本刊中的所有文章

参考文献:
[1] Markman JL, Rekechenetskiy A, Holler E, et al. Nanomedicine therapeutic approaches to overcome cancer drug resistance[J]. Adv Drug Deliv Rev, 2013, 65:1866-1879.
[2] Shapira A, Livney YD, Broxterman HJ, et al. Nanomedicine for targeted cancer therapy:towards the overcoming of drug resistance[J]. Drug Resist Updat, 2011, 14:150-163.
[3] Dawar S, Singh N, Kanwar RK, et al. Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers[J]. Drug Discov Today, 2013, 18:1292-1300.
[4] Bu HH, Gao Y, Li YP. Overcoming multidrug resistance (MDR) in cancer by nanotechnology[J]. Sci China Chem, 2010, 53:2226-2232.
[5] Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression[J]. Nat Rev Cancer, 2006, 6:521-534.
[6] Chen L, Shang J, Wang ZF, et al. Synthesis and biological evaluation of nitrate-oleanolic acid hybrids as inhibitors of HepG2 cell apoptosis[J]. Acta Pharm Sin (药学学报), 2010, 45:1516-1522.
[7] Zheng N, Liu L, Liu W, et al. Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro[J]. Acta Pharmacol Sin, 2017, 38:277-289.
[8] Mocellin S, Bronte V, Nitti D, et al. Nitric oxide, a double edged sword in cancer biology:searching for therapeutic opportunities[J]. Med Res Rev, 2007, 27:317-352.
[9] Kim J, Saravanakumar G, Choi HW, et al. A platform for nitric oxide delivery[J]. J Mater Chem B, 2014, 2:341-356.
[10] Wu W, Perrin-Sarrado C, Ming H, et al. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta[J]. Nanomedicine, 2016, 12:1795-1803.
[11] Wu W, Gaucher C, Fries I, et al. Polymer nanocomposite particles of S-nitrosoglutathione:a suitable formulation for protection and sustained oral delivery[J]. Int J Pharm, 2015, 495:354-361.
[12] Wu W, Gaucher C, Diab R, et al. Time lasting S-nitrosoglutathione polymeric nanoparticles delay cellular protein S-nitrosation[J]. Eur J Pharm Biopharm, 2015, 89:1-8.
[13] Kim MS, Blake M, Baek JH, et al. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA[J]. Cancer Res, 2003, 63:7291-7300.
[14] Havelka AM, Berndtsson M, Olofsson MH, et al. Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas:is acute apoptosis an "off-target" effect?[J]. Mini Rev Med Chem, 2007, 7:1035-1039.
[15] Hirst DG, Robson T. Nitrosative stress in cancer therapy[J]. Front Biosci, 2007, 12:3406-3418.
[16] Wink DA, Laval J. The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo[J]. Carcinogenesis, 1994, 15:2125-2129.
[17] Graziewicz M, Wink DA, Laval F. Nitric oxide inhibits DNA ligase activity:potential mechanisms for NO-mediated DNA damage[J]. Carcinogenesis, 1996, 17:2501-2505.
[18] Chien YH, Bau DT, Jan KY, et al. Nitric oxide inhibits DNA-adduct excision in nucleotides excision repair[J]. Free Radic Biol Med, 2004, 36:1011-1017.
[19] Laval F, Wink DA. Inhibition by nitric oxide of the repair protein, O6-methylguanine DNA-methyltransferase[J]. Carcinogenesis, 1994, 15:443-447.
[20] Kim J, Pramanick S, Lee D, et al. Polymeric biomaterials for the delivery of platinum-based anticancer drugs[J]. Biomater Sci, 2015, 3:1002-1017.
[21] Gibson D. The mechanism of action of platinum anticancer agents-what do we really know about it?[J]. Dalton Trans, 2009, 48:10681-10689.
[22] Ivanov AI, Christodoulou J, Parkinson JA, et al. Cisplatin binding sites on human albumin[J]. J Biol Chem, 1998, 273:14721-14730.
[23] Turchi JJ. Nitric oxide and cisplatin resistance:NO easy answers[J]. Proc Natl Acad Sci U S A, 2006, 103:4337-4338.
[24] De Luca A, Moroni N, Serafino A, et al. Treatment of doxorubicin-resistant MCF7/Dx cells with nitricoxide causes histone glutathionylation and reversal of drug resistance[J]. Biochem J, 2011, 440:175-183.
[25] Huang LE, Willmore WG, Gu J, et al. Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling[J]. J Biol Chem, 1999, 274:9038-9044.
[26] Callapina M, Zhou J, Schmid T, et al. NO restores HIF-1α hydroxylation during hypoxia:role of reactive oxygen species[J]. Free Radic Biol Med, 2005, 39:925-936.
[27] Bonavida B, Baritaki S, Huerta-Yepez S, et al. Novel therapeutic applications of nitric oxide donors in cancer:roles in chemo-and immuno-sensitization to apoptosis and inhibittion of metastases[J]. Nitric Oxide, 2008, 19:152-157.
[28] Huerta-Yepez S, Baritaki S, Baay-Guzman G, et al. Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and BclXL are overexpressed in prostate cancer[J]. Nitric Oxide, 2013, 29:17-24.
[29] Riganti C, Miraglia E, Viarisio D, et al. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux[J]. Cancer Res, 2005, 65:516-525.
[30] Riganti C, Orecchia S, Pescarmona G, et al. Statins revert doxorubicin resistance via nitric oxide in malignant mesothelioma[J]. Int J Cancer, 2006, 119:17-27.
[31] Lind DS, Kontaridis MI, Edwards PD, et al. Nitric oxide contributes to adriamycin's antitumor effect[J]. J Surg Res, 1997, 69:283-287.
[32] Seabra AB, de Lima R, Calderón M. Nitric oxide releasing nanomaterials for cancer treatment:current status and perspectives[J]. Curr Top Med Chem, 2015, 15:298-308.
[33] Jia XB, Zhang YH, Zou Y, et al. Dual intratumoral redox/enzyme-responsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy[J]. Adv Mater, 2018:e1704490.
[34] Duong HTT, Kamarudin ZM, Erlich RB, et al. Intracellular nitric oxide delivery from stable NO-polymeric nanoparticle carriers[J]. Chem Commun, 2013, 49:4190-4192.
[35] Lee HJ, Kim DE, Park DJ, et al. pH-responsive mineralized nanoparticles as stable nanocarriers for intracellular nitric oxide delivery[J]. Colloids Surf B Biointerfaces, 2016, 146:1-8.
[36] Kim J, Yung BC, Kim WJ, et al. Combination of nitric oxide and drug delivery systems:tools for overcoming drug resistance in chemotherapy[J]. J Control Release, 2017, 263:223-230.
[37] Song Q, Tan S, Zhuang X, et al. Nitric oxide releasing D-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin[J]. Mol Pharm, 2014, 11:4118-4129.
[38] Lin SY, Wang MR, Chiu SJ, et al. S-Nitrosothiols (SNO) as light-responsive molecular activators for post-synthesis fluorescence augmentation in fluorophore-loaded nanospheres[J]. J Mater Chem B, 2018, 6:153-164.
[39] Chung MF, Liu HY, Lin KJ, et al. A pH-responsive carrier system that generates NO bubbles to trigger drug release and reverse P-glycoproteinmediated multidrug resistance[J]. Angew Chem Int Ed Engl, 2015, 54:9890-9893.
[40] Fan J, He Q, Liu Y, et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization[J]. ACS Appl Mater Interfaces, 2016, 8:13804-13811.
[41] Guo R, Tian Y, Wang YJ, et al. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer[J]. Adv Funct Mater, 2017, 27:1606398.
[42] Duong HTT, Kamarudin ZM, Erlich RB, et al. Intracellular nitric oxide delivery from stable NO-polymeric nanoparticle carriers[J]. Chem Commun, 2013, 49:4190-4192.
[43] Choi HW, Kim J, Kim Y, et al. Light-induced acid generation on a gatekeeper for smart nitric oxide delivery[J]. ACS Nano, 2016, 10:4199-4208.
[44] Maeda H, Noguchi Y, Sato K, et al. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor[J]. Jpn J Cancer Res, 1994, 85:331-334.
[45] Wu J, Akaike T, Maeda H, et al. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and anitric oxide scavenger[J]. Cancer Res, 1998, 58:159-165.
[46] Seki T, Fang J, Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application[J]. Cancer Sci, 2009, 100:2426-2430.
[47] Kinoshita R, Ishima Y, Ikeda M et al. S-Nitrosated human serum albumin dimer as novel nano-EPR enhancer applied to macromolecular anti-tumor drugs such as micelles and liposomes[J]. J Control Release, 2015, 217:1-9.
[48] Wang MR, Chiu SJ, Chou HC, et al. An efficient S-NO-polysilsesquioxane nano-platform for the co-delivery of nitric oxide and an anticancer drug[J]. Chem Commun, 2015, 51:15649-15652.
[49] Garcia JV, Zhang F, Ford PC. Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide[J]. Philos Trans A Math Phys Eng Sci, 2013, 371:20120129.
[50] Zhang X, Tian G, Yin W, et al. Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy[J]. Adv Func Mater, 2015, 25:3049-3056.
[51] Jo YS, van der Vlies AJ, Gantz J, et al. Micelles for delivery of nitric oxide[J]. J Am Chem Soc, 2009, 131:14413-14418.
[52] Kumar V, Hong SY, Maciag AE, et al. Stabilization of the nitric oxide (NO) prodrugs and anticancer leads, PABA/NO and double JS-K, through incorporation into PEG-protected nanoparticles[J]. Mol Pharm, 2010, 7:291-298.
[53] Barraud N, Kardak BG, Yepuri NR, et al. Cephalosporin-3'-diazeniumdiolates:targeted NO-donor prodrugs for dispersing bacterial biofilms[J]. Angew Chem Int Ed Engl, 2012, 51:9057-9060.